英语轻松读发新版了,欢迎下载、更新

绿色代码:道德领导力在协调人工智能引起的工作不安全感与数字工作场所的环保行为方面的作用

2024-11-29 15:28:51 英文原文

作者:Lee, Julak

介绍

我们的星球面临着不断升级的环境挑战,促使员工在工作中的环保行为 (PEBW) 成为组织可持续发展努力的前沿。随着企业努力应对其生态足迹,PEBW 已成为缓解环境退化和在组织环境中促进可持续实践的关键因素(Norton 等人,2015年;杨等人,2023年)。这些自愿行动涵盖从节能和减少废物到生态创新和环境管理等一系列行为,共同促进组织的环境绩效,进而促进全球可持续发展倡议(Ones & Dilchert、2012年)。PEBW 的意义不仅仅在于企业社会责任;它代表了组织如何实现环境可持续性的根本转变,认识到员工参与对于实现有意义的生态成果至关重要(Bai 等人,2024年)。在环境风险对企业和整个社会构成生存威胁的时代,理解和推广 PEBW 已从次要问题转变为组织弹性和长期生存能力的战略要务。

对 PEBW 关键作用的认识促进了对其前身的广泛学术探究,旨在揭开驱动或抑制这些工作中的环保行为的复杂因素网络。这一新兴的研究机构阐明了一系列不同的影响,并在多个层面进行分析。在个人层面,研究已确定环境态度、个人价值观和环境知识是 PEBW 的关键预测因素(Kim 等人,2017年;扎切尔等人,2023年)。事实证明,组织要素,包括绿色组织文化、领导层对环保举措的支持以及环境管理体系的存在,可以显着塑造成员参与环保行动的倾向(Paillé等人,2013年;田等人,2020年;扎切尔等人,2023年)。

尽管有关 PEBW 前身的文献越来越多,但仍然存在一些关键的研究空白。首先,研究人工智能 (AI) 相关变量对 PEBW 影响的研究明显不足(Zacher 等人,2023年)。在人工智能正在迅速改变商业格局的时代,了解其对员工行为(包括 PEBW)的影响至关重要。特别是,人工智能引起的工作不安全感已经成为当代工作环境中的一个突出问题(Brougham & Haar,2020年)。虽然现有文献探讨了工作不安全感对各种工作成果的影响(Lee 等人,2018年),人工智能引起的工作不安全感对环保行为的具体影响仍有待探索。考虑到组织在管理技术颠覆和环境可持续性方面面临的双重挑战,这一差距尤其显着。人工智能引起的工作不安全感与 PEBW 之间的潜在联系在理论上可以从多个角度建立。资源保护理论(Hobfoll 等人,(2018年)) 表明,面临工作不稳定的员工可能会减少 PEBW 等随意行为的参与度。社会交换理论(Cropanzano 和 Mitchell,2005年)认为人工智能引起的工作不安全感可能被视为违反隐性社会契约,可能会降低员工从事角色外行为的意愿。

其次,虽然研究探索了 PEBW 的各种前因,但缺乏深入研究解释人工智能引起的工作不安全感与 PEBW 联系的潜在机制和背景变量(Zacher 等人,2023年)。了解这些中介和调节机制对于深入理解技术变革如何影响员工行为至关重要。具体来说,员工对其与组织的心理契约的态度的作用,例如对心理契约违反(PCB)的看法,可能对于阐明人工智能引起的工作不安全感与 PEBW 之间的联系至关重要。

第三,道德领导力在 PEBW 背景下的缓冲作用,特别是在人工智能引发的挑战方面,仍然没有得到充分探索。道德领导,是指坚持道德正确行为并鼓励他人也这样做的做法(Brown & Treviño,2006年),可能会削弱人工智能引起的工作不安全感对员工态度和行为的潜在负面影响。在环境不稳定的世界中,组织行为会产生深远的生态后果,道德领导力在指导可持续实践方面的重要性怎么强调也不为过。

为了弥补这些研究差距并有助于在技术变革的背景下更全面地理解 PEBW,本研究旨在调查以下研究问题:

– 人工智能引起的工作不安全感在多大程度上影响 PEBW?这种关系是如何通过 PCB 来调节并通过道德领导力来调节的? –

这个综合研究问题涵盖了我们对人工智能引起的工作不安全感和 PEBW 之间错综复杂的相互作用的调查,研究了心理契约违约的中介作用和道德领导力的调节影响。通过解决这个问题,我们的目标是帮助更全面地理解当代组织中技术变革、员工认知、领导力和环保行为之间复杂的相互作用。

这项研究通过整合三个不同的研究方向,对文献做出了独特的贡献:人工智能引起的工作不安全感、心理契约理论和工作中的环保行为。虽然之前的研究已经分别研究了这些概念(例如,Broughham & Haar,2018年;帕耶和赖内里,2015年;扎切尔等人,2023年),我们的研究首次在组织可持续性的背景下探索它们之间的相互关系。通过研究心理契约违背的中介作用和道德领导力的调节作用,我们提供了关于技术进步如何影响环境关键时代成员行为的有意义的知识。

具体来说,为了弥补研究空白​​,本研究提出了一个综合模型,以 PCB 为中介、道德领导力为调节因素,检验人工智能引起的工作不安全感与 PEBW 之间的联系。我们的理论框架整合了三种互补的理论,它们共同为理解我们模型中的关系提供了全面的基础。首先,社会交换理论(Cropanzano & Mitchell,2005年)阐明了心理契约违约如何通过互惠和社会交换关系的视角来调节人工智能引起的工作不安全感和亲环境行为之间的关系。其次,情境-态度-行为框架(Guagnano 等人,1995年)提供了一个总体结构,解释了组织环境(人工智能实施)如何塑造员工态度(心理契约认知)并最终影响他们的行为(PEBW)。三、社会信息处理理论(Salancik & Pfeffer,1978年)解释了员工如何解释和应对工作环境中与人工智能相关的变化,特别强调了道德领导力在形成这些解释中的作用。这些理论共同提供了全面的理论基础,使我们能够研究人工智能对员工行为的多方面影响,特别是在环境可持续性的背景下。通过整合这些观点,我们可以更细致地了解技术变革、成员观念、领导力和环保行为之间复杂的相互作用。

这项研究的相关性超出了文献中尚未研究的领域。通过研究人工智能引起的工作不安全感、心理契约违反和工作中的环保行为之间的相互作用,我们的研究提供了几项重大贡献。

首先,我们的研究将当代组织研究的两个关键领域联系起来:技术变革的管理和亲环境行为的促进。通过研究人工智能的采用如何影响环境行为,我们有助于更全面地理解组织的可持续性,同时考虑技术和人为因素。

其次,当世界各国政府和组织努力应对技术颠覆和环境可持续性的双重挑战时,我们的研究可以为制定同时解决这两个问题的政策提供信息。我们的研究结果可能有助于制定法规或组织政策,减轻人工智能对员工行为的潜在负面影响,同时培育环境责任文化。

第三,通过研究道德领导力在人工智能引起的工作不安全感和环保行为背景下的调节作用,本文可能有助于技术变革时代负责任领导力的文献。这有助于制定领导力培训计划,更好地应对人工智能实施带来的道德挑战。

第四,我们的研究整合了多个理论视角的见解,包括资源节约理论(COR)、社会交换理论(SET)、心理契约理论(PCT)、社会信息处理理论(SIPT)和情境态度-行为框架、社会交换理论和不确定性管理理论。这种整合可以更全面地了解工作场所的技术变革如何影响员工的态度和行为,特别是在环境可持续性的背景下。通过这样做,我们有助于开发更细致的理论框架,以理解人工智能时代组织可持续性的复杂动态。

最后,随着组织越来越多地采用人工智能技术,同时努力提高其环境绩效,我们的研究为管理者和政策制定者提供了宝贵的见解。了解人工智能引起的工作不安全感如何影响环保行为可以帮助组织制定更有效的策略来管理技术转型,同时维持或改进其可持续发展计划。

通过推进理论理解和整合多种视角,这项研究丰富了当前对技术变革、员工认知、领导力和环保行为之间复杂相互作用的认识。具体来说,我们的研究扩展了现有的理论,研究人工智能引起的工作场所变化如何通过心理机制影响员工的环境行为,同时考虑道德领导的作用。技术进步文献与环境可持续性研究的结合为数字时代的组织行为提供了新颖的见解。

理论和假设

人工智能引起的工作不安全感及其组织影响

我们认为人工智能引起的工作不安全感可能会导致员工 PEBW 的下降。人工智能引起的工作不安全感是组织心理学和管理研究中的一个新兴概念,反映了人们对人工智能技术对就业稳定性和工作角色影响的日益关注。这种现象将人工智能和自动化对各种职业和行业带来的具体威胁纳入考虑范围,从而扩展了传统的工作不安全感概念。人工智能引起的工作不安全感可以被概念化为员工对由于人工智能技术在工作场所或行业中的实施或进步而导致的潜在失业或重大工作变化的看法(Brougham & Haar,2018年)。这种形式的不安全感具有与一般工作不安全感不同的独特特征,例如技术变革的快速步伐以及跨不同工作类别的潜在广泛影响(Frey&Osborne,2017年;南,2019年)。最近的研究发现了导致人工智能引起的工作不安全感的几个因素。机器学习、自然语言处理和机器人技术的进步扩展了人工智能系统的功能,从而提高了各种工作角色的自动化潜力(Frank 等人,2019年)。此外,专注于数字化转型和通过人工智能实施降低成本的组织战略提高了员工对潜在工作岗位流失的认识(Shrestha 等人,2019年)。人工智能引起的工作不安全感的后果超出了与一般工作不安全感相关的后果(Bazzoli & Probst,2023年;Muñoz Medina 等人,2023年;肖斯等人,2023年)。之前的研究表明,它会导致技术压力增加、工作满意度降低和组织承诺减弱(Brougham & Haar,2018年;卡利夫等人,2020年;肖斯等人,2023年)。

工作中的环保行为 (PEBW):定义和重要性

PEBW 是组织和环境心理学研究中的一个新兴概念,重点关注员工在工作场所环境中促进环境可持续性的自愿行为(Zhang 等人,2024年)。近年来,这一主题引起了相当大的关注,主要是由于人们越来越关注企业可持续发展以及员工对实现环境目标所做贡献的认可(Tu 等人,2023年;扎切尔等人,2023年)。PEBW 涵盖员工采取的一系列广泛行动,以减少其工作相关活动对环境的影响并促进组织内的生态可持续性(Bai 等人,2024年;金等人,2017年)。这些行为可以包括节能、减少废物、回收利用、可持续通勤以及倡导环保政策和实践(Boiral 等人,2015年;聂等人,2023年)。PEBW 的后果超出了环境效益。研究表明,参与 PEBW 与提高工作满意度、增强组织承诺和增强员工福祉相关(Lamm 等人,2013年;尤里耶夫等人,2018年;扎切尔等人,2023年)。此外,成功推广 PEBW 的组织通常会获得声誉效益并改善利益相关者关系(Raineri & Paillé,2016年;扎切尔等人,2023年)。

人工智能引发的工作不安全感和员工 PEBW

根据我们的研究目标,即了解人工智能引起的工作不安全感对环保行为的影响,我们的第一个假设检验了这两种结构之间的直接关系。人工智能在工作中的整合引入了一种新型的工作不安全感,称为人工智能引发的工作不安全感,这可能会严重影响员工的行为,包括 PEBW。本研究通过社会交换理论的视角调查了人工智能引起的工作不安全感与 PEBW 之间的关联。

社会交换理论(SET)通过关注员工与组织关系的互惠性质,进一步阐明了人工智能引起的工作不安全感与 PEBW 之间潜在的负面关系。SET 认为雇佣关系是基于一系列相互依存的交换,并期望互惠控制这些相互作用(Cropanzano 和 Mitchell,2005年)。当组织以造成工作不稳定的方式实施人工智能技术时,成员会认为这违反了他们与雇主之间的隐性社会契约。这种交换关系中的不平衡感可能会导致员工减少以积极的自由行为来回报的义务。Paillé 等人的最新工作。(2023年)支持这一观点,表明感知到的组织支持显着影响员工对环保行为的参与。

假设1:人工智能引起的工作不安全感与 PEBW 呈负相关。

人工智能引发的工作不安全感和 PCB

心理契约违背在工作场所行为中的作用

我们认为人工智能引起的工作不安全感可能会加剧 PCB。PCB 是一个重要的概念,重点关注员工与其雇主之间明显违反默示协议的行为(Kim & Kim,2024年;钟等人,2023年)。这一概念因其对成员的态度、行为和整体组织成果产生深远影响而受到广泛关注(Coyle-Shapiro 等人,2019年;穆罕默德等人,2023年)。心理契约涉及个人对自己和组织之间的相互责任和期望的看法,这些看法没有在书面契约中正式说明(卢梭,1989年)。当员工认为他们的组织没有履行他们之间不言而喻的协议中的一项或多项承诺时,就会发生 PCB(Gong、Sims(2023年);莫里森和罗宾逊,1997年)。员工不断评估他们的雇佣关系,将他们的期望与工作场所的实际经历进行比较(Tekleab 等人,2020年)。即使组织认为自己已经履行了职责,这种持续的评估也可能会在发现差异时导致人们产生违规的感觉。违反心理契约的后果是深远的,而且主要是负面的。在个人层面,PCB 与工作满意度下降、组织承诺下降、离职意向增加和工作绩效下降有关(Mohammad 等人,2023年;赵等人,2007年)。此外,PCB 还会导致情绪疲惫、幸福感下降以及对组织的愤世嫉俗(Mohammad 等人,2023年;雷曼和古齐,2017年)。PCB 还探讨了心理契约违反在个人层面之外的连锁反应。PCB 会对团队绩效和组织公民行为产生负面影响。此外,已经观察到心理契约违约的传染效应,个人对违约的看法会影响其同事的态度和行为(Tomprou 等人,2015年)。

人工智能引发的工作不安全感和 PCB

我们的第二个假设探讨了人工智能引起的工作不安全感如何影响心理契约认知,解决了我们理解这种关系中发挥作用的心理机制的目标。通过社会信息处理理论解释人工智能引起的工作不安全感-PCB关联,提供对现代工作场所中这一复杂现象的全面理解。

社会信息处理理论 (SIPT) 提供了另一个理论视角来理解人工智能引起的工作不安全感与 PCB 之间的关联。SIPT 假设个人的态度和行为是由社会背景和环境中可用的信息塑造的(Salancik 和 Pfeffer,1978年)。在人工智能实施的背景下,员工可以收集和处理来自各种来源的信息,包括组织沟通、同事讨论和媒体报道,以形成他们对工作不安全感的感知并评估他们的心理契约。Bankins 等人之前的研究。(2020年)将 SIPT 应用于技术变革的背景,认为员工对与新技术相关的组织行动和政策的解释受到社会线索和集体意义建构过程的显着影响。如果组织内部或更广泛的社会背景将人工智能视为对工作保障的威胁,员工可能更有可能意识到他们的期望与组织实践之间存在不一致,从而导致 PCB。

假设2:人工智能引起的工作不安全感与 PCB 呈正相关。

PCB 和 PEBW

第三个假设研究了 PCB 和 PEBW 之间的关系,进一步推动了我们了解技术变革背景下影响环保行为的因素的目标。PCB和PEBW之间的关系可以通过社会交换理论来阐明,从而提供对组织环境中这种复杂相互作用的全面理解。

社会交换理论 (SET) 为理解这种关系提供了基础视角(Cropanzano 和 Mitchell,2005年)。在工作场所,员工与组织进行一系列的交流,期望随着时间的推移达到让与取的平衡。当员工感知到 PCB 时,他们可能会将其解释为交换关系中的不平衡,从而导致他们以积极的自由裁量行为(包括 PEBW)回报的意愿降低。Tian 等人之前的研究。(2020年)将 SET 扩展到环境行为领域,表明员工对组织对环境举措支持的看法会显着影响他们对 PEBW 的参与。当 PCB 发生时,员工可能会感到缺乏组织支持,不仅是一般性的支持,而且还特别是在环保方面的支持。这种缺乏支持的感觉可能会削弱他们参与 PEBW 的动力,因为他们不再将这些行动视为互利交流的一部分。

假设3:PCB 与 PEBW 呈负相关。

PCB在人工智能引发的工作不安全感中的中介作用-PEBW环节

当前的论文表明,PCB 将调解人工智能引起的工作不安全感与 PEBW 之间的联系。我们的第四个假设整合了前三个假设,提出了一种中介机制来解释人工智能引起的工作不安全感与 PEBW 之间的关系。情境-态度-行为 (CAB) 框架提供了一个引人注目的镜头,通过它可以深入研究人工智能引起的工作不安全感、PCB 和 PEBW 之间的复杂联系。这个框架提出了一个连续的过程,其中偶然因素影响态度,进而形成行为(Guagnano 等人,1995年)。将此框架应用于我们的研究模型,为了解 PCB 的中介作用提供了宝贵的见解。

在我们的模型中,人工智能引起的工作不安全感代表了情境因素。人工智能技术在工作场所的实施创造了独特的环境条件,可以显着影响员工的感知和体验。Brougham 和 Haar 最近的研究(2020年)表明人工智能的引入可能会造成一种不确定的氛围,并威胁到工作保障,从而形成员工工作的独特环境。

在这个框架中,PCB 充当态度成分。对心理契约违反的看法反映了员工根据人工智能实施带来的环境变化对雇佣关系的评估。借鉴 Coyle-Shapiro 等人的工作。(2019年),我们可以将 PCB 概念化为对预期和收到的组织支持之间的感知差异的认知和情感反应,特别是在面对技术变革时。

PEBW 代表我们模型中的行为结果。这些旨在提高组织生态绩效的志愿活动受到环境和在该环境中形成的态度的影响。田等人之前的研究。(2020年)证明员工在 PEBW 中的参与度对组织环境和个人对组织的态度都很敏感。

CAB 框架提出,环境对行为的影响通常是由态度来调节的。在我们的模型中,这意味着人工智能引起的工作不安全感可能不会直接导致 PEBW 的变化,而是通过其对 PCB 的影响来发挥作用。这种中介假设与 CAB 框架的顺序性质相一致,表明人工智能引起的工作不安全感对 PEBW 的影响是通过对 PCB 的影响来发挥作用的。通过增加 PCB,人工智能引发的工作不安全感创造了一种不利于 PEBW 的态度基础。

假设4:PCB 介导了人工智能引起的工作不安全感与 PEBW 之间的负相关关系。

道德领导力在人工智能引起的工作不安全感中的调节作用-PCB链接

我们认为道德领导力起着调节作用,减少人工智能引起的工作不安全感对 PCB 的负面影响。根据我们之前的讨论,人工智能引起的工作不安全感似乎很明显可能会增加 PCB。然而,必须承认人工智能引起的工作不安全感对 PCB 的影响在不同的组织环境中是不同的。

作为主持人的道德领导力

道德领导力关注领导力的道德维度及其对追随者、组织和整个社会的影响。这种结构因其在培育积极的组织文化、提高员工福祉和促进可持续商业实践方面的关键作用而受到广泛关注 Brown & Treviño,2006年)。从本质上讲,道德领导是指“通过个人行为和人际关系展示规范上适当的行为,并通过双向沟通、强化和决策向追随者推广这种行为”(Brown 等人).,2005年,p。120)。该定义强调道德领导的双重方面:成为有道德的人和有道德的管理者。道德领导的结果是非常积极的。在个人层面,道德领导力与提高工作满意度、组织承诺、组织信任和工作投入度相关(Le 等人,2023年;吴恩达和费尔德曼,2015年)。它还促进追随者之间的道德行为和知识共享行为,减少工作场所偏差,并提高员工福祉(Bedi 等人,2016年;乐等人,2023年;林等人,2016年;拉希德等人,2024年)。在组织层面,道德领导有助于提高公司绩效、增强企业社会责任和加强利益相关者关系(Eisenbeiss & Brodbeck,2014年;艾森柏斯等人,2015年;卡尔拉等人,2023年)。

道德领导力对人工智能引起的工作不安全感的调节影响-PCB链接

我们的最终假设检验了道德领导力在此过程中的作用,解决了我们的目标,即确定可能减轻人工智能引起的工作不安全感的负面影响的因素。道德领导力在人工智能引起的工作不安全感与 PCB 链接中的调节作用可以通过几个理论视角来理解,为我们的第五个假设提供了一个全面的框架。

首先,社会信息处理理论(SIPT)为这种调节效应提供了一个有价值的视角。SIPT 假设个人的态度和行为是由其环境中的社会线索和信息塑造的(Salancik 和 Pfeffer,1978年)。道德领导者的特点是公平、正直和关心他人,他们提供了重要的社会线索,可以影响员工对组织事件的解释(Brown & Treviño,2006年)。

当道德领导的程度很高时,成员将获得关于人工智能实施及其潜在影响的清晰、诚实的沟通。这种透明度可以帮助减轻与AI引起的工作不安全感相关的不确定性和威胁的感觉。例如,在一家在其客户服务运营中实施AI的高科技公司中,道德领导者可能会主动传达组织重新锻炼员工的承诺,并为受AI影响的人找到替代角色。这种方法可以帮助维持员工的信任,并减少违反心理合同的可能性。

相反,当道德领导层较低时,缺乏明确的道德指导可能会加剧AI引起的工作不安全感的有害影响。在这种情况下,成员可能会对组织的AI策略及其对工作的影响感到沮丧。例如,在一家引入AI驱动自动化的制造公司中,低道德领导力可能表现为对自动化的时间表和范围缺乏透明度,从而增加了焦虑症和更高的心理合同漏洞的可能性。

其次,社会交流理论(集合)也支持这一节制假设。设定的假定,就业关系是基于相互交流的(Cropanzano&Mitchell,2005年)。道德领导人通过表现出对追随者的关心和关注,可以产生一种义务和积极的互惠感。

当道德领导力很高时,即使面对AI引起的工作不安全感,员工也可能会感到更强烈的组织支持感。这种感知的支持可以缓冲PCB的感知。例如,在实施AI诊断援助的医疗保健组织中,道德领导者可能会强调该组织在员工福祉和专业发展以及AI实施以及专业发展方面的参与。这种方法可以加强社会交流关系,从而减轻工作不安全感的负面影响。

相反,低道德领导可能无法促进这种积极的互惠感。在这种情况下,AI引起的工作不安全感可能更容易转化为PCB的看法。例如,在一家广告代理商介绍AI进行竞选优化的广告代理商中,低道德领导者可能表现为对公司对公司的利益的重点,而无需解决员工的关注。这种方法可能会削弱社会交流关系,从而扩大了AI引起的工作不安全感与PCB之间的关联。

假设5:道德领导力调节AI引起的工作不安全感与PCB之间的积极关系,因此,当道德领导层较高时,这种关系较弱。

方法

参与者和程序

这项调查涵盖了一个不同的员工组装,他们年龄在20岁或以上,来自韩国各地的各种各样的公司。收集数据的方法分为三个不同的阶段,采用三方波浪时置设计来精心检查时间的演变。参与者的招聘是通过一个主要的数字研究平台执行的,该平台以其大约552万的潜在受访者而闻名(Kim等人,Kim等人。2024年)。在网上进行的最初注册过程中,个人确认了他们正在进行的就业机会并进行了确认步骤,需要蜂窝电话号码或电子邮件地址,从而加强了数据采集程序的安全措施。数字问卷在积累全面和多样化样本中的效用是通过其在先前研究中的既定有效性和可靠性来证实的(Landers&Behrend,2015年)。

这项学术工作的目的是从韩国各个公司的积极雇用工人那里收集时地研究的数据,从而解决横断面分析中经常看到的固有缺点。此询问中采用的复杂数字工具促进了整个调查期间对参与者参与的细致监控,保证了在数据收集的所有阶段中均匀的参与。从策略上讲,数据收集的时间安排每五到六个星期的间隔设定,每个调查窗口可在两到三天的时间内可用,以优化参与者的响应。采取了严格的措施来维护数据的完整性,包括使用地理IP限制机制来避免任何过度迅速的答复,从而确保研究发现的真实性和可信赖性。数据收集波(6周)之间所选的时间间隙是基于几个因素(Kim等,。2024年)。首先,此持续时间充分降低了常见方法偏差的风险(Podsakoff等,,,2012年),但仍然足够简短,以观察研究结构的不断发展的动力学。此外,以前已经在工作场所的工作不安全感和行为动态的纵向研究中使用了类似的时间间隔,证明了它们在捕获这些现象的转变方面的足够性(例如Vander Elst等,,,,,Vander Elst et al。2014年)。此外,此时间表允许在一个单一的财政季度内完成数据收集,从而最大程度地降低了通常在季度之间发生的重大公司转型的影响。

调查协调员积极地与潜在受试者接触,以征求他们参与研究的参与。团队明确保证了潜在参与者的贡献自愿性质以及对数据的严格保密性和独家研究利用。在获得愿意个人的知情同意书后,严格遵守了整个研究的严格道德准则(Kim等,2024年)。由于他们的参与,参与者获得了八到九美元的经济薪酬。

为了获得代表性样本,考虑了基本的人口统计学和职业特征,利用了分层的随机抽样方法。这项技术需要随机选择从预定义的层次,以减轻与性别,年龄,职称,教育成就和就业领域等变量相关的偏见。分层标准包括性别,年龄组(20 29、30 39、40â49、50 -59),专业级别(员工,助理经理,经理,经理/副总经理,部门/总经理或以上),教育资格(高中或更少的社区学院,学士学位,硕士学位或更高的学位)以及行业。在每个层中,通过计算机生成的随机数序列选择个体。研究团队精心监测了跨数字界面的参与者活动,以确保在调查的三个阶段中持续参与。

关于参与者的投票率,调查的初始阶段使811名员工做出了回应。第二个检查站将该数字降低到573,并从394名员工中记录的阶段记录响应。在数据收集之后,实施了广泛的清洁程序,以排除任何不完整的记录。该研究最终基于391名受访者,他们成功完成了调查的所有阶段,最终参与率为48.21%。样本量的计算通过学术建议告知,包括将G*功率应用于统计功率分析。

措施

在最初的调查阶段,我们询问参与者对AI引起的工作不安全感和道德领导水平的经历。随后的问卷致力于评估参与者对PCB的看法。到第三次问卷时,该研究已经收集了有关受访者中PEBW程度的信息。每个变量都通过多项目指标进行定量评估,并采用5点李克特量表进行评估。

AI引起的工作不安全感(工人报告的时间1,时间1)

AI引起的工作不安全感量表改编自Kraimer等人((2005年)工作不安全感。本文修改了原始项目,以专门解决工作中AI实现的上下文。例如,原始项目 - 我有信心,只要我希望适应我的组织,我都可以为我的组织工作。引入AI Technologies。这种适应过程涉及对组织心理学和AI专家小组的认知访谈,以确保内容有效性。改编的量表由五个项目组成:``人工智能技术的引入使我在工作不安全的工作,如果我当前的组织面临经济问题,我的工作将被人工智能取代。”即使我愿意,如果组织的经济状况,我将无法保留目前的工作恶化,该组织将引入人工智能技术,我目前的工作可能会消失,即使我愿意,由于引入了人工智能技术,我也不相信我可以继续在组织中工作。。这些项目旨在反映由于AI的实施而特别是由于AI的实施而对失业或工作不稳定的威胁,与原始规模的关注工作不安全感保持一致,但在技术变革的背景下。报道Cronbach的Alpha值为0.951。

道德领导(时间1,工人报告)

布朗及其同事开发的道德领导量表的10个项目(2005年)用于评估道德领导。项目样本包括:我的领导者纪律符合违反道德标准的员工。'我的领导者与员工讨论了商业道德或价值观。我的领导者在做出决策时,符合道德的条件,我的领导者倾听了员工所拥有的。说,我的主管可以被信任。该量表表现出Cronbach的±值为0.854。

PCB(时间2,工人报告)

我们利用了依靠先前研究的心理合同违规量表中的修改了五个项目(CoyleâShapiro&Kessler,2000年)。示例项目包括:•迄今为止,我的雇主在招募期间做出的所有承诺尚未得到保留,'我还没有收到我的捐款的所有承诺,'我的雇主即使我维持了这笔交易的一面,也打破了我的许多诺言,我感到被组织背叛了,我觉得我的组织违反了我们之间的合同。该量表表现出Cronbach的±值为0.907。

PEBW(工人报告的时间3,时间3)

本研究遵循了先前的研究,使用了pebw量表中的八个项目(Boiral&Paillã©,2012年;Paillé&Boiral,2013年)。这些物品包括:在我的工作中,我在做可能影响环境的事情之前权衡了行动的后果,”我在日常工作活动中自愿执行环境行动和倡议。”我一直了解我公司的环境举措,我向同事提出建议,以更有效地保护环境,即使不是我的直接责任是,我积极参加在我公司组织和/或由我的公司举办的环境活动,我采取了对组织形象做出积极贡献的环境行动。对于解决我组织中环境问题的项目,努力或事件,我会自发地帮助我的同事在他们所做的一切中考虑环境工作,我鼓励我的同事采用更加环保的行为。报道Cronbach的Alpha值为0.936。

控制变量

基于先前的研究(Boiral&Paillã©,2012年;Paillé&Boiral,2013年),我们通过在分析中包括这些变量来控制性别,职位,教育和任期等因素。第一个调查是收集这些控制变量的时候。根据这项研究,在研究PEBW时包括控制变量,例如性别,教育水平,职位和任期,这是有帮助的。仔细考虑这些控制因素可以更准确地评估感兴趣的主要变量,并减少省略的可变偏差的影响。

统计分析

为了检查研究变量之间的连接,我们利用SPSS版本28在数据收集后进行Pearson相关分析。安德森(Anderson),格林(1988年)提出了一种两阶段的方法,我们精确地遵循了:测量模型和结构模型。我们采用了AMOS 26程序,并利用了最大可能性(ML)估算技术来使用调节中介分析来检查结构模型。在确认了使用验证因子分析(CFA)的测量模型之后,我们遵守结构方程模型(SEM)中的既定程序。

我们利用几个模型拟合指数来评估我们结构方程模型的适当性。比较拟合指数(CFI)和Tucker-Lewis索引(TLI)将模型的拟合度与更受限制的嵌套基线模型进行比较。值高于0.90表示良好的拟合度(Hu&Bentler,1999年)。与完美(饱和)模型相比,近似均方根误差(RMSEA)估计我们模型中缺乏拟合度,其值低于0.06,表明良好拟合(Hu&Bentler,1999年)。如果CFI和TLI的值优于0.90,则以前发表的学术标准认为该模型很令人满意(请参阅表1)。

表1样品的描述性特征。

结果

描述性统计

我们的研究揭示了感兴趣的关键变量之间的显着相关性:AI引起的工作不安全感,道德领导,PCB和PEBW。如表所示2,AI引起的工作不安全感与PCB正相关(Râ= 0.24,p<<0.01),与Pebw呈负相关(râ= 0.11,p<0.05),为我们的假设提供初步支持。值得注意的是,道德领导与PEBW具有显着的正相关(Râ= 0.25,p<<0.01)和与PCB的负相关性(râ= 0.16,p<0.01),强调了其潜在的保护作用。这些相关性在表中详细介绍2,您可以在下面找到插入的。表2研究变量之间的相关性。测量模型

为了检查我们的测量模型的充分性,当前的研究对所有问题进行了验证性因素分析(CFA),以评估我们四个主要变量的判别有效性:AI引起的工作不安全感,道德领导力,PCB和PEBW。

进行了一系列卡方差异测试,以比较4因子模型(AI引起的工作不安全感,道德领导力,PCB和PEBW)与替代模型。

3因子模型的卡方值为1029.713,自由度为148度,CFI为0.837,TLI为0.812,RMSEA为0.124。2因子模型的卡方值为2199.639,自由度为150度,CFI为0.621,TLI为0.568,RMSEA为0.187。单因素模型的卡方值为3056.525,自由度为151度,CFI为0.463,TLI为0.392,RMSEA为0.222。每个因素模型的拟合指数表明,4因子模型在拟合方面优于其他模型。卡方值为309.497,自由度为145度。此外,CFI为0.970,TLI为0.964,RMSEA为0.054。进一步的卡方检验证明了这四个研究变量具有足够的判别有效性。

结构模型

我们的调解模型集成了调解和适度分析。这种方法使我们不仅可以检查AI引起的工作不安全感如何通过PCB(调解)影响PEBW,还可以研究道德领导力如何影响AI引起的工作不安全感和PCB之间关系的力量(节制)。这个全面的模型提供了对我们感兴趣的变量之间复杂关系的细微理解(Hayes,2018年)。在此框架内,本文研究了AI引起的工作不安全感对PEBW的影响是由PCB介导的。此外,道德领导被认为是可以削弱AI引起的工作不安全感对PCB的增强影响的主持人。

为了实施我们的节制分析,我们通过结合AI引起的工作不安全感和道德领导的均值因素来形成一个互动术语。卑鄙的中心过程至关重要,因为它有助于减少多共线性的问题,这些问题在构建互动术语时通常会出现(Aiken&West,1991年)。这种方法不仅减轻了多重共线性,而且还保留了相关性的强度,从而提高了我们的节制分析的可靠性(Brace等,,2003年)。

为了评估潜在的多重共线性的程度,我们计算了方差通胀因子(VIF)和相应的公差水平,并遵守Brace等人描述的程序。(2003年)。分析表明,AI引起的工作不安全感和道德领导的变量记录了VIF值为1.025,公差水平相应地为0.975。这些数字表明,我们的变量并未遭受明显的多重共线性问题的折磨,因为VIF值基本上低于公认的10限,而公差值显着超过了0.2的最低标准(Brace等,Brace等人。2003年)。

调解评估的发现

为了找到最合适的调解模型,我们采用了卡方差异测试来评估完整的调解模型是否比部分调解模型更合适。与部分调解相反,在完整的调解模型中未考虑AI引起的工作不安全感与PEBW之间的直接关联。这两种模型都具有很强的拟合度,完整的调解模型显示了拟合指数(â= 346.308(df = 158),cfiâ= 0.961,tli = 0.953,rmsea = 0.055),部分调解显示(•2â= 345.541(df = 157),cfiâ= 0.961,tliâ= 0.952,rmseaâ=â= 0.055)。我们采用了卡方差异测试,将完整的调解模型与部分调解模型进行了比较。该测试对于确定从AI诱导的工作不安全感到PEBW的直接路径(在部分调解模型中)是否显着改善模型拟合至关重要,与更简约的完整调解模型相比(Byrne,Byrne,2010年)。不显着的卡方差异表明,附加路径并不能显着改善模型拟合,从而支持更齐本的模型(Kline,Kline,2015年)。这种方法使我们能够凭经验证明选择中介模型的选择是合理的,从而确保我们不会不必要地使用非显着的路径使模型复杂化。卡方差异测试的结果表明,完整的调解模型具有优异的拟合度,如非显着的卡方差异所示(2 [1] = 0.767,= 0.767,p模型之间的0.05)。该结果表明,AI引起的工作不安全感会通过PCB间接影响PEBW。此外,我们还利用了控制变量,包括任期,性别,教育水平和职业地位。但是,这些变量在影响PEBW方面没有获得统计学意义。

与我们最初的期望相反,假设1不支持AI诱导的工作不安全感与PEBW之间的直接负相关关系(歧程= 0.048,p≤>≤0.05)。该结果强调了我们的调解假设(H4)的重要性,并强调了考虑干预心理过程的必要性,例如在检查AI引起的工作不安全感对员工行为的影响时进行调解或调节因素。

结果肯定了假设2,表明AI诱导的工作不安全感对PCB产生了积极影响(= 0.304,,p<0.001)和假设3,这表明PCB大大降低了Pebw(®= 0.240,0.240,p–< –0.001)。结果显示在表中3。表3结构模型的结果。自举

为了检查假设4,这表明AI诱导的工作不安全感 - PEBW链接是由PCB介导的,本研究使用了一种Boottrapping技术,样本量为10,000(Shrout&Bolger,Shrout&Bolger,

2002年

)。为了使AI诱导的工作不安全感对建立PEBW的间接效应的统计显着性,95%的偏置校正置信区间(CI)不应包括零。引导结果表明,通过PCB对PEBW的AI诱导的工作不安全感具有显着的间接影响(95%CI:0.125至0.036)。该发现支持假设4,并表明,尽管AI引起的工作不安全感可能不会直接影响Pebw,但通过增加员工对心理合同违规的看法而间接地做到这一点(请参阅图。1)。图1理论模型(PEBW表示工作中的环境行为)。

PCB在AI诱导的工作不安全感和PEBW之间的关系中的重要中介作用与上下文 - 态度 - 行为框架保持一致(Guagnano等人,Guagnano等人。
figure 1

1995年)。

我们的发现表明,AI引起的工作不安全感(上下文)会影响PCB(态度),进而影响PEBW(行为)。这种调解(间接)效应(= 0.073,p<<0.01)强调了考虑员工心理经验在理解技术变化对环境行为的影响方面的重要性。此外,尽管我们的结果支持PCB的中介作用,但应考虑其他解释。例如,AI引起的工作不安全感与PEBW之间的关系可能会受到我们模型中未包括的因素,例如组织文化或技术接受方面的个体差异。这些见解在表中详细介绍4

表4最终研究模型的直接,间接和总影响。

审核评估的发现

我们的审核分析的目的是调查道德领导力对AI引起的工作不安全感与PCB之间关系的潜在调节影响。为了实现这一目标,我们的研究通过使AI引起的工作不安全感和道德领导的平均价值正常化,建立了一个互动术语,这有助于解决潜在的多重共线性并保留我们评估的透明度。事实证明,相互作用项具有统计学意义(= 0.149,p<0.01),表明我们的节制分析(图。2)揭示了AI引起的工作不安全感与PCB的道德领导力之间的显着互动效果。这一发现证实了假设5,并表明道德领导能够减轻AI引起的工作不安全感对心理合同的看法的不利影响。

图2:我们的研究模型的系数值(**p<<0.01,***p<0.001。
figure 2

所有值都是标准化的,PEBW意味着工作中的促环境行为)。

讨论

这项研究旨在探讨AI引起的工作不安全感,感知的合同违规(PCB),工作中的环境行为(PEBW)(PEBW)以及道德领导的调节影响之间的复杂动态。这些发现阐明了技术进步,尤其是AI的实施方式,影响员工的行为和组织可持续性倡议(请参见图。3)。

图3
figure 3

道德领导力在AI引起的工作不安全感 - 心理合同违规链接中的调节作用。

与我们最初的假设相反,我们没有观察到AI诱导的工作不安全感与PEBW(H1)之间的直接负相关。这种意外的结果表明,AI引起的工作不安全感对环境行为的影响比以前考虑的要复杂。这与最近的研究一致,表明工作不安全感和可酌情行为之间的联系并不是一致的(Sverke等,,2019年)。缺乏直接链接强调需要考虑中介变量以充分掌握技术变化与员工行为之间的复杂相互作用。

我们的发现表明,与我们最初的假设相反,AI引起的工作不安全感不会直接影响PEBW。这一意外的发现表明,AI引起的工作不安全感与PEBW之间的关系比最初的理论更为复杂。它与最近的文献一致表明,工作不安全感对酌处行为的影响可能是间接的,是通过中介机制运行的(Shoss等,。2023年)。该结果强调了我们的调解假设(H4)的重要性,并强调了在研究AI引起的工作不安全感对员工行为的影响时考虑干预心理过程的必要性。几种替代机制可能解释了这一发现。首先,AI引起的工作不安全感可能会触发一系列复杂的反应,这些反应对PEBW产生平衡。例如,尽管工作不安全感可能会降低一些员工愿意进行可酌情行为的意愿,但它可能会同时激励他人参与PEBW,作为印象管理或工作保存策略的一种形式(Bolino,Bolino,1999年)。其次,AI诱导的工作不安全感和PEBW之间的关系可能会受到我们模型中未捕获的因素(例如环境价值)的调节(Kim等,,2017年)或感知的组织支持(Paillé&Raineri,2015年)。未来的研究可以探索这些潜在的调节因素。最后,我们研究的时间范围可能不足以捕获AI引起的工作不安全感对PEBW的全部影响,这表明需要在该领域进行长期纵向研究(Sverke等,Serverke等。2019年)。

我们的结果坚定地肯定了AI引起的工作不安全感与PCB(H2)之间的正相关。这与心理合同理论一致,该理论认为,重大的组织变革会导致对雇员和雇主之间隐性协议的认识(Rousseau&McLean Parks,1993年)。被认为是危害工作安全的AI技术的部署似乎促使人们重新评估就业关系,并有可能减少员工与组织之间的相互义务。这种见解扩大了我们对技术转变如何改变工作场所心理契约的理解。

该研究进一步验证了PCB和PEBW(H3)之间的负相关关系,这与社会交流理论一致(Cropanzano&Mitchell,2005年)。当员工在心理契约中遇到违规时,他们可能会通过减少对组织受益的可支配行为的参与,包括亲环境活动。这一发现突出了维持强大的心理合同以促进组织公民身份行为的重要性,尤其是与环境可持续性有关的行为。

值得注意的是,我们的分析证实了PCB在AI诱导的工作不安全感与PEBW(H4)之间的联系中的中介作用。这为技术转变影响员工行为的机制提供了更深入的了解。这表明AI引起的工作不安全感不会直接减少促环境行为;相反,它通过对员工对心理合同的看法的影响来影响这些行为。这种调解与上下文 - 态度 - 行为(CAB)框架保持一致(Guagnano等,,1995年)说明上下文因素(AI部署)如何影响态度(对心理合同违规的看法),这反过来又决定了行为(PEBW)。

道德领导力在AI引起的工作不安全感与PCB(H5)之间的关系中的调节作用为实施AI的组织提供了可能的缓解策略提供了宝贵的见解。这一发现与以前有关道德领导的研究相关(Brown&Treviã±O,2006年)技术变革和可持续性的领域。道德领导者通过表现出公平,正直和对员工福祉的承诺,似乎减轻了AI引起的工作不安全感对心理合同看法的不利影响。这强调了领导力在导航技术变革的人类方面和维持员工参与可持续性计划中的关键作用。

我们的发现为应对AI引起的工作不安全感的组织领导者提供了一些具体建议。首先,领导者应建立常规渠道,以沟通有关AI计划,对工作角色的潜在影响以及组织适应的计划。这种透明的沟通策略可能包括以AI为重点的市政厅会议和专门的更新新闻通讯(Brynjolfsson&McAfee,2017年)。此外,组织应投资于重新锻炼和提高技能计划,以使员工在AI增强工作场所的不断发展工作。例如,像IBM这样的公司已经实施了AI伦理委员会,使员工参与了与AI相关的决策过程(Fountaine等,2019年)。组织还应优先考虑道德领导能力的发展,尤其是在监督AI实施的经理中,这可能涉及将道德决策模块纳入领导力培训计划(Brown&Treviã±O,2006年)。此外,组成包括技术专家和员工代表在内的跨职能团队可以帮助确保AI实施考虑技术和人为因素,从而减少工作不安全感(Shrestha等,2019年)。最后,组织应创建并传达清晰的职业发展路径,以说明AI的整合,并帮助员工在技术变化中可视化公司的未来(Makarius等,Makarius等。2020年)。

理论意义

这项研究提供了一些重要的理论意义,这些含义有助于并扩展了组织行为,环境心理学和技术管理方面的先前工作。

首先,这项研究通过将pebw与AI引起的工作不安全感的概念相结合来提高对员工PEBW的理论理解。By doing so, it expands the scope of PEBW antecedents beyond traditional organizational and individual factors (Norton et al.,2015年) to include technological disruption as a critical contextual influence. This integration bridges the gap between technological advancement literature and environmental sustainability research, offering a novel perspective on how emerging technologies shape employee behaviors. The findings contribute to the refinement of the Context-Attitudes-Behavior (CAB) framework (Guagnano et al.,1995年) by demonstrating how AI, as a contextual factor, influences pro-environmental attitudes and behaviors. This expansion of the CAB framework to include technological contexts enhances its applicability in contemporary organizational settings and provides a more comprehensive model for understanding PEBW in the digital age.

Secondly, the exploration of psychological contract breach as a mediating mechanism offers valuable perspectives on the psychological mechanisms underlying the link between AI-induced job insecurity and PEBW. This contribution extends psychological contract theory (Rousseau,1989年) by examining how technological changes can alter employees’ perceptions of their implicit agreements with organizations. By demonstrating the role of PCB in the relationship, the study enriches our understanding of the cognitive and affective pathways through which job insecurity influences discretionary behaviors. This finding not only advances psychological contract theory but also contributes to the broader literature on employee responses to organizational change (Oreg et al.,2011年), highlighting the importance of perceived organizational obligations in shaping employee behaviors during periods of technological disruption.

Thirdly, the investigation of ethical leadership as a moderating factor provides significant theoretical implications for leadership research within the realm of technological change and sustainability. Through investigating how ethical leadership influences the relationship between AI-induced job insecurity and PEBW, this study extends ethical leadership theory (Brown & Treviño,2006年) into the domain of environmental sustainability and technological disruption. The findings contribute to our understanding of how leadership practices can weaken the negative influences of AI-induced job insecurity on pro-environmental behaviors, offering novel perspectives on the role of leadership in fostering organizational sustainability in turbulent technological environments. The amalgamation of ethical leadership with AI and sustainability research offers a more intricate theoretical structure for comprehending the effectiveness of leadership in the face of complex, contemporary organizational challenges.

Lastly, the study’s comprehensive theoretical approach, which integrates multiple frameworks including Social Information Processing Theory, the Uncertainty Management Model, and Social Exchange Theory, offers a robust foundation to understand the intricate interaction among technological change, members’ perceptions, leadership, and pro-environmental behaviors. This integrative approach advances theoretical development in organizational behavior by demonstrating how diverse theoretical perspectives can be synthesized to explain complex phenomena. The current research’s theoretical model offers a comprehensive framework for future works, encouraging a more holistic approach to investigating the sustainability of organizations within the realm of technological change. Through illustrating how these theories can be combined to explain the complex associations between AI, job insecurity, psychological contracts, leadership, and PEBW, this research paves the way for more sophisticated theoretical models in organizational and environmental psychology.

In conclusion, these theoretical implications collectively enhance the level of sophistication and thoroughness in comprehending PEBW in the context of technological disruption. They extend existing theories, bridge gaps between disparate research streams, and provide a solid foundation for future investigations into the complex dynamics of organizational sustainability in an increasingly digital world.

实际意义

The current study has valuable practical implications for top-level management teams and executives, and practitioners navigating the complex intersection of artificial intelligence (AI) implementation, employee behavior, and organizational sustainability. These insights provide actionable strategies for fostering pro-environmental behaviors while managing the challenges associated with technological disruption.

The first key implication for organizations is the need for a strategic and employee-centric approach to AI implementation. The findings underscore the potential harmful influences of AI-induced job insecurity on PEBW, highlighting the importance of carefully considering the human implications of AI adoption alongside technological and operational benefits. Top management teams should develop comprehensive change management strategies that address employee concerns about job security during AI implementation, aligning with research by Brougham and Haar (2020年) on managing employee perceptions during technological transitions. Implementing transparent communication protocols is crucial to keep members informed about AI activities, their potential impacts, and the organization’s plans for workforce adaptation. Such clear communication can help mitigate uncertainty and reduce perceptions of PCB (Morrison & Robinson,1997年)。

The second practical implication stems from the study’s findings on the mediating effect of PCB, emphasizing the importance of actively managing employee expectations and perceptions of organizational duties in the AI era. Organizations should regularly assess and realign psychological contracts to reflect the changing nature of work in AI-enhanced environments. This may involve explicitly addressing expectations around job roles, skill development, and job security in the context of AI adoption (Coyle-Shapiro et al.,2019年)。Developing policies and practices that demonstrate organizational commitment to employee well-being and career development, even as AI technologies are integrated into work processes, can help maintain a positive social exchange relationship and encourage reciprocal pro-environmental behaviors (Cropanzano & Mitchell,2005年)。

Third, the moderating effect of ethical leadership on the relationship between AI-induced job insecurity and PCB has significant practical implications. This finding suggests that ethical leadership practices, such as transparent communication about AI implementation and demonstrating concern for employee well-being, can mitigate the negative effects of AI-induced job insecurity on psychological contract perceptions. For instance, leaders who openly discuss the potential impacts of AI on job roles and provide opportunities for skill development may help maintain the psychological contract, even in the face of technological uncertainty.

Our findings extend previous research on job insecurity and pro-environmental behaviors. While previous works like Shoss et al.,2023年reported direct relationships between job insecurity and organizational citizenship behaviors, our results reveal a more complex picture. The non-significant direct path from AI-induced job insecurity to PEBW (β = −0.048,p > 0.05), coupled with the significant indirect effect through PCB, suggests that the impact of job insecurity on pro-environmental behaviors is more nuanced than previously thought. This aligns with recent calls in the literature for more complex models of employee behavior in the face of technological change (Brougham & Haar,2018年)。Furthermore, our study is among the first to empirically demonstrate the role of ethical leadership in the context of AI-induced job insecurity.While Brown and Treviño (2006年) have established the general importance of ethical leadership, our findings specifically show its buffering effect in technological transitions. This contributes to the literature on leadership in this digital age (Shrestha et al.,2019年)。

The fourth practical implication derives from the study’s comprehensive theoretical framework, suggesting the need for a holistic approach to organizational sustainability that integrates technological, human, and environmental considerations. Organizations should develop cross-functional teams that bring together expertise in AI implementation, human resources, sustainability, and ethics to ensure a balanced approach to organizational initiatives. Implementing sustainability scorecards or key performance indicators (KPIs) that include measures of AI adoption, employee well-being, and environmental performance can help organizations track progress across multiple dimensions of sustainability (Epstein,2018年)。

Fifth, our findings suggest several specific leadership practices and organizational policies to mitigate AI-induced job insecurity and foster PEBW. Organizations should proactively redesign job roles to incorporate AI, clearly defining how human employees and AI will collaborate. This can reduce uncertainty and job insecurity, as demonstrated by companies like Accenture that have implemented ‘Human-AI collaboration’ workshops to help employees understand and adapt to their evolving roles (Wilson & Daugherty,2018年)。Furthermore, organizations should create dedicated committees or task forces responsible for overseeing the ethical implementation of AI.These structures can help ensure that AI deployment considers employee well-being and job security, as exemplified by Microsoft’s AI ethics review process, which involves cross-functional teams to assess the potential impacts of AI projects on various stakeholders, including employees (Floridi et al.,2018年)。Organizations can also link AI implementation to environmental sustainability goals, potentially increasing employee engagement in PEBW.For example, Google’s DeepMind AI has been used to reduce energy consumption in data centers, a project that can inspire employees to consider AI’s potential for environmental benefits (DeepMind,2016年)。Additionally, organizations should ensure that AI-driven decisions, especially those affecting job roles or employment status, are transparent and explainable.This can help maintain trust and reduce perceptions of psychological contract breach, as demonstrated by IBM’s development of AI explainability toolkits that provide clear explanations of AI-driven decisions to employees (Gunning & Aha,2019年)。Lastly, establishing voluntary, employee-led groups focused on AI can provide a platform for employees to share concerns, learn about AI developments, and contribute ideas for ethical AI implementation, fostering a sense of involvement and potentially reducing job insecurity.

Sixth, while our study was conducted in South Korea, the implications of our findings may vary across different cultural contexts. For instance, the effect of ethical leadership on mitigating AI-induced job insecurity might be stronger in cultures with higher power distance, where leaders’ behaviors have a more significant impact on employees’ perceptions (Hofstede,2001年)。Similarly, the relationship between psychological contract breach and PEBW might be influenced by cultural differences in individualism versus collectivism.In more collectivist cultures, employees might maintain pro-environmental behaviors despite perceived contract breaches due to a stronger sense of collective responsibility (Triandis,1995年)。

Furthermore, the perception of AI-induced job insecurity itself might vary across cultures. In societies with stronger social safety nets or lifetime employment traditions, such as Japan, the impact of AI on job insecurity might be less pronounced (Kato & Kodama,2018年)。Conversely, in countries with more fluid labor markets, like the United States, AI-induced job insecurity might have a more significant effect on employee attitudes and behaviors.Therefore, while our findings provide valuable insights, organizations operating in diverse cultural contexts should consider these cultural nuances when implementing AI and designing strategies to maintain psychological contracts and promote pro-environmental behaviors.Future research could explicitly examine these cross-cultural variations to provide more globally applicable insights.

Limitations and suggestions for future works

While this paper offers valuable perspectives on the relationships between AI-induced job insecurity, PCB, PEBW, and ethical leadership, it is crucial to recognize many constraints and suggest avenues for future investigation.

First, while our 3-wave time-lagged design offers several advantages over cross-sectional studies, it is not without limitations. First, the potential for attrition bias must be considered. Our final response rate of 48.21% suggests that a significant portion of initial participants did not complete all three waves. This attrition may have introduced bias if the characteristics of those who dropped out differed systematically from those who completed the study (Wolke et al.,2009年)。Moreover, the time gaps between data collection (5–6 weeks) may have influenced our results.While this interval was chosen to minimize common method bias and capture the dynamic nature of our constructs, it may not have been optimal for detecting all relevant changes.For instance, the effects of AI-induced job insecurity on psychological contract breach might manifest over a longer period, or conversely, might be more immediate and thus partially missed by our measurement intervals (Podsakoff et al.,2012年)。

Additionally, our study’s timeframe coincided with the ongoing COVID-19 pandemic, which may have introduced confounding factors. The pandemic has accelerated digital transformation in many organizations, potentially amplifying AI-induced job insecurity. Simultaneously, it may have affected pro-environmental behaviors due to changed work arrangements (e.g., increased remote work). The contingent elements would have affected the results of this paper in ways that are difficult to isolate (Carnevale & Hatak,2020年)。

Second, our study was conducted within the unique cultural confines of South Korea, thus constraining the extrapolation of our results to different cultural environments. The perception of job insecurity, the nature of psychological contracts, and the manifestation of pro-environmental behaviors can vary significantly across cultures (Rousseau & Schalk,2000年)。Future research should consider cross-cultural comparisons to examine how these relationships may differ in various cultural contexts.This could involve replicating the study in multiple countries or conducting a multi-level analysis that incorporates national culture as a higher-level factor influencing individual-level relationships (Tsui et al.,2007年)。

Third, while our study focused on ethical leadership as a moderating factor, other leadership styles or organizational factors may also play crucial roles in shaping the relationships we examined. Future studies could explore the moderating effects of transformational leadership, servant leadership, or green leadership on the link between AI-induced job insecurity and PCB or PEBW (Eva et al.,2019年;Robertson & Barling,2013年)。Additionally, investigating organizational-level factors such as organizational culture, climate for innovation, or environmental management systems could offer a more comprehensive knowledge of the contextual influences on the relationships (Norton et al.,2015年)。

Fourth, our measurement of AI-induced job insecurity, while adapted from established scales, may not fully capture the nuanced nature of job insecurity related to AI implementation. The rapid evolution of AI technologies and their varied applications across different job roles and industries suggest that a more fine-grained measure of AI-induced job insecurity might be necessary. Future research could develop and validate a more comprehensive scale that considers different aspects of AI-induced job insecurity, such as fears of job displacement, concerns about skill obsolescence, or anxieties about human-AI collaboration (Brougham & Haar,2020年;南,2019年)。

Fifth, while our study examined PEBW as an outcome, future works can investigate a more diverse range of outcomes affected by AI-induced job insecurity and psychological contract breach. This could include other forms of organizational citizenship behaviors, job performance, innovation behaviors, or employee well-being (Zhao et al.,2007年)。Additionally, investigating potential positive consequences of AI implementation, including augmented job enrichment or new skill development opportunities, could offer a more balanced view on the impact of AI at work (Makarius et al.,2020年)。

Lastly, our study focused on individual-level perceptions and behaviors. However, the implementation of AI technologies often occurs at the team or organizational level. Future works can adopt a multi-level approach to delve into how team-level or organization-level AI implementation strategies influence individual-level perceptions of job insecurity, PCB, and subsequent behaviors (Kozlowski & Klein,2000年)。This could involve collecting data from multiple sources in an organization, such as employees, team leaders, and senior management, to gain a more holistic understanding of the phenomena.

Addressing these limitations and pursuing these future research directions could significantly improve our knowledge of the complex interplay between technological advancements, employee perceptions, leadership, and PEBW. Future research could explore digital transformations beyond AI and their impact on PEBW. For instance, the increasing adoption of Internet of Things (IoT) technologies in workplaces presents an interesting avenue for investigation. IoT devices can provide real-time feedback on resource consumption, potentially influencing employees’ environmental behaviors. Research could examine how this constant availability of environmental data affects PEBW and whether it interacts with factors like job insecurity or psychological contract breach (Marikyan et al.,2019年)。

Additionally, emerging forms of leadership, such as digital leadership or sustainable leadership, could be examined in relation to PEBW. Digital leadership, which emphasizes the ability to drive digital transformation while considering its human implications, might have unique effects on how employees perceive and respond to technological changes in terms of their pro-environmental behaviors (Cortellazzo et al.,2019年)。Similarly, sustainable leadership, which explicitly incorporates environmental considerations into leadership practices, could have significant implications for PEBW and might interact differently with AI-induced job insecurity compared to traditional leadership styles (Suriyankietkaew & Avery,2016年)。

Furthermore, future studies could adopt a multi-level approach to examine how team-level or organization-level AI implementation strategies influence individual-level perceptions of job insecurity, PCB, and subsequent behaviors. This could involve collecting data from multiple sources within organizations, such as employees, team leaders, and senior management, to gain a more holistic understanding of the phenomena (Kozlowski & Klein,2000年)。

Lastly, given the rapid advancement of AI technologies, longitudinal studies spanning several years may offer precious perspectives into how the relationship between AI-induced job insecurity and PEBW evolves over time. Such studies could capture potential adaptation processes and long-term changes in employee attitudes and behaviors as AI becomes more integrated into work processes.

结论

This study provides significant insights into the complex relationships between AI-induced job insecurity, psychological contract breach, pro-environmental behavior at work, and the moderating effect of ethical leadership. Our findings reveal that AI-induced job insecurity does not directly impact PEBW, but rather operates through the mediating mechanism of psychological contract breach. The strong positive relationship between AI-induced job insecurity and PCB, coupled with the negative relationship between PCB and PEBW, highlights the potential unintended consequences of AI implementation on organizational sustainability efforts. Importantly, our research demonstrates the crucial role of ethical leadership in mitigating the negative effects of AI-induced job insecurity on psychological contract perceptions. As organizations continue to grapple with the dual challenges of technological advancement and environmental sustainability, understanding these intricate relationships becomes increasingly critical for fostering a sustainable and technologically advanced workplace.

数据可用性

当前研究期间生成和分析的数据集可根据合理要求从相应作者处获得。

参考

  • Aiken LS, & West SG (1991) Multiple regression: Testing and interpreting interactions.贤者出版社

  • Anderson JC, Gerbing DW (1988) Structural equation modeling in practice: A review and recommended two-step approach. Psychol Bull 103(3):411–423

    谷歌学术一个 

  • Bai J, Tian Q, Fan X, Sun H (2024) Perceived corporate social responsibility and employee voluntary pro‐environmental behavior: Does moral motive matter? Corp Soc Responsib Environ Manag 31(2):816–830

    谷歌学术一个 

  • Bankins S, Griep Y, Hansen SD (2020) Charting directions for a new research era: Addressing gaps and advancing scholarship in the study of psychological contracts. Eur J Work Organ Psychol 29(2):159–163

    谷歌学术一个 

  • Bazzoli A, Probst TM (2023) Vulnerable workers in insecure jobs: A critical meta‐synthesis of qualitative findings. Appl Psychol 72(1):85–105

    谷歌学术一个 

  • Bedi A, Alpaslan CM, Green S (2016) A meta-analytic review of ethical leadership outcomes and moderators. J Bus Ethics 139(3):517–536

    谷歌学术一个 

  • Bolino MC (1999) Citizenship and impression management: Good soldiers or good actors? Acad Manag Rev 24(1):82–98

    谷歌学术一个 

  • Boiral O, Paillé P (2012) Organizational citizenship behaviour for the environment: Measurement and validation. J Bus Ethics 109:431–445

    谷歌学术一个 

  • Boiral O, Paillé P, Raineri N (2015) The nature of employees’ pro-environmental behaviors.In J. L. Robertson & J. Barling (Eds.), The Psychology of Green Organizations (pp. 12–32).牛津大学出版社

  • Brace N, Kemp R, Snelgar R (2003) A guide to data analysis using SPSS for windows.帕尔格雷夫·麦克米伦, 纽约

    谷歌学术一个 

  • Brougham D, Haar J (2018) Smart Technology, Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ perceptions of our future workplace. J Manag Organ 24(2):239–257

    谷歌学术一个 

  • Brougham D, Haar J (2020) Technological disruption and employment: The influence on job insecurity and turnover intentions: A multi-country study. Technol Forecast Soc Change 161:120276

    谷歌学术一个 

  • Brown ME, Treviño LK (2006) Ethical leadership: A review and future directions. Leadersh Q 17(6):595–616

    谷歌学术一个 

  • Brown ME, Treviño LK, Harrison DA (2005) Ethical leadership: A social learning perspective for construct development and testing. Organ Behav Hum Decis Process 97(2):117–134

    谷歌学术一个 

  • Byrne BM (2010) Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.).劳特利奇

  • Brynjolfsson E, McAfee A (2017) The business of artificial intelligence. Harv Bus Rev 7:3–11

    谷歌学术一个 

  • Califf CB, Sarker S, Sarker S (2020) The bright and dark sides of technostress: A mixed-methods study involving healthcare IT. MIS Q 44(2):809–856

    谷歌学术一个 

  • Carnevale JB, Hatak I (2020) Employee adjustment and well-being in the era of COVID-19: Implications for human resource management. J Bus Res 116:183–187

    考研一个 考研中心一个 谷歌学术一个 

  • Cortellazzo L, Bruni E, Zampieri R (2019) The role of leadership in a digitalized world: A review. Front Psychol 10:1938

    考研一个 考研中心一个 谷歌学术一个 

  • Coyle‐Shapiro J, Kessler I (2000) Consequences of the psychological contract for the employment relationship: A large scale survey. J Manag Stud 37(7):903–930

    谷歌学术一个 

  • Coyle-Shapiro JAM, Pereira Costa S, Doden W, Chang C (2019) Psychological contracts: Past, present, and future. Annu Rev Organ Psychol Organ Behav 6:145–169

    谷歌学术一个 

  • Cropanzano R, Mitchell MS (2005) Social exchange theory: An interdisciplinary review. J Manag 31(6):874–900

    谷歌学术一个 

  • DeepMind (2016) DeepMind AI reduces Google data centre cooling bill by 40%.检索自https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40

  • Eisenbeiss SA, Brodbeck F (2014) Ethical and unethical leadership: A cross-cultural and cross-sectoral analysis. J Bus Ethics 122(2):343–359

    谷歌学术一个 

  • Eisenbeiss SA, van Knippenberg D, Fahrbach CM (2015) Doing well by doing good? Analyzing the relationship between CEO ethical leadership and firm performance. J Bus Ethics 128(3):635–651

    谷歌学术一个 

  • Epstein MJ (2018) Making sustainability work: Best practices in managing and measuring corporate social, environmental and economic impacts.劳特利奇

  • Eva N, Robin M, Sendjaya S, van Dierendonck D, Liden RC (2019) Servant leadership: A systematic review and call for future research. Leadersh Q 30(1):111–132

    谷歌学术一个 

  • Floridi L, Cowls J, Beltrametti M, Chatila R, Chazerand P, Dignum V, … Vayena E (2018) AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and Mach 28:689–707

  • Fountaine T, McCarthy B, Saleh T (2019) Building the AI-powered organization. Harv Bus Rev 97(4):62–73

    谷歌学术一个 

  • Frank MR, Autor D, Bessen JE, Brynjolfsson E, Cebrian M, Deming DJ, Wang D (2019) Toward understanding the impact of artificial intelligence on labor. Proc Natl Acad Sci 116(14):6531–6539

    ADS一个 中科院一个 考研一个 考研中心一个 谷歌学术一个 

  • Frey CB, Osborne MA (2017) The future of employment: How susceptible are jobs to computerisation? Technol Forecast Soc Change 114:254–280

    谷歌学术一个 

  • Gong B, Sims RL (2023) Psychological contract breach during the pandemic: How an abrupt transition to a work from home schedule impacted the employment relationship. J Bus Res 154:113259

    考研一个 谷歌学术一个 

  • Guagnano GA, Stern PC, Dietz T (1995) Influences on attitude-behavior relationships: A natural experiment with curbside recycling. Environ Behav 27(5):699–718

    谷歌学术一个 

  • Gunning D, Aha D (2019) DARPA’s explainable artificial intelligence (XAI) program. AI Mag 40(2):44–58

    谷歌学术一个 

  • Hayes AF (2018) Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.).吉尔福德出版社

  • Hobfoll SE, Halbesleben J, Neveu JP, Westman M (2018) Conservation of resources in the organizational context: The reality of resources and their consequences. Annu Rev Organ Psychol Organ Behav 5:103–128

    谷歌学术一个 

  • Hofstede G (2001) Culture’s consequences: Comparing values, behaviors, institutions, and organizations across nations.贤者出版社

  • Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Modeling: A Multidiscip J 6(1):1–55

    谷歌学术一个 

  • Kalra A, Briggs E, Schrock W (2023) Exploring the synergistic role of ethical leadership and sales control systems on salesperson social media use and sales performance. J Bus Res 154:113344

    谷歌学术一个 

  • Kato T, Kodama N (2018) The effect of corporate social responsibility on gender diversity in the workplace: Econometric evidence from Japan. Br J Ind Relat 56(1):99–127

    谷歌学术一个 

  • Kim A, Kim Y, Han K, Jackson SE, Ployhart RE (2017) Multilevel influences on voluntary workplace green behavior: Individual differences, leader behavior, and coworker advocacy. J Manag 43(5):1335–1358

    谷歌学术一个 

  • Kim BJ, Kim MJ (2024) The influence of work overload on cybersecurity behavior: A moderated mediation model of psychological contract breach, burnout, and self-efficacy in AI learning such as ChatGPT. Technol Soc 77:102543

    谷歌学术一个 

  • Kim BJ, Oh HJ, Kim MJ, Lee DG (2024) The Perils of Perfection: Navigating the Ripple Effects of Organizational Perfectionism on Employee Misbehavior through Job Insecurity and the Buffering Role of AI Learning Self-Efficacy. Behav Sci 14(10):937

    考研一个 考研中心一个 谷歌学术一个 

  • Kline RB (2015) Principles and practice of structural equation modeling (4th ed.).吉尔福德出版社

  • Kozlowski SW, Klein KJ (2000) A multilevel approach to theory and research in organizations: Contextual, temporal, and emergent processes.In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 3–90).乔西·巴斯

  • Kraimer ML, Wayne SJ, Liden RC, Sparrowe RT (2005) The role of job security in understanding the relationship between employees’ perceptions of temporary workers and employees’ performance. J Appl Psychol 90(2):389–398

    考研一个 谷歌学术一个 

  • Lamm E, Tosti-Kharas J, Williams EG (2013) Read this article, but don’t print it: Organizational citizenship behavior toward the environment. Group Organ Manag 38(2):163–197

    谷歌学术一个 

  • Landers RN, Behrend TS (2015) An inconvenient truth: Arbitrary distinctions between organizational, Mechanical Turk, and other convenience samples. Ind Organ Psychol 8(2):142–164

    谷歌学术一个 

  • Le PB, Nguyen DTN (2023) Stimulating knowledge-sharing behaviours through ethical leadership and employee trust in leadership: the moderating role of distributive justice. J Knowl Manag 27(3):820–841

    谷歌学术一个 

  • Lee C, Huang GH, Ashford SJ (2018) Job insecurity and the changing workplace: Recent developments and the future trends in job insecurity research. Annu Rev Organ Psychol Organ Behav 5(1):335–359

    谷歌学术一个 

  • Lin SHJ, Ma J, Johnson RE (2016) When ethical leader behavior breaks bad: How ethical leader behavior can turn abusive via ego depletion and moral licensing. J Appl Psychol 101(6):815

    考研一个 谷歌学术一个 

  • Makarius EE, Mukherjee D, Fox JD, Fox AK (2020) Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. J Bus Res 120:262–273

    谷歌学术一个 

  • Marikyan D, Papagiannidis S, Alamanos E (2019) A systematic review of the smart home literature: A user perspective. Technol Forecast Soc Change 138:139–154

    谷歌学术一个 

  • Mohammad SS, Nazir NA, & Mufti S (2023) Psychological contract breach: an integrative literature review. Journal of Services Research, 23(2)

  • Morrison EW, Robinson SL (1997) When employees feel betrayed: A model of how psychological contract violation develops. Acad Manag Rev 22(1):226–256

    谷歌学术一个 

  • Muñoz Medina F, López Bohle SA, Beurden JV, Chambel MJ, Ugarte SM (2023) The relationship between job insecurity and employee performance: a systematic literature review and research agenda. Career Dev Int 28(6/7):589–632

    谷歌学术一个 

  • Nam T (2019) Technology usage, expected job sustainability, and perceived job insecurity. Technol Forecast Soc Change 138:155–165

    谷歌学术一个 

  • Ng TW, Feldman DC (2015) Ethical leadership: Meta-analytic evidence of criterion-related and incremental validity. J Appl Psychol 100(3):948–965

    考研一个 谷歌学术一个 

  • Nie Q, Peng J, Yu G (2023) Leader expectations facilitate employee pro‐environmental behavior. Bus Ethics Environ Responsib 32(2):555–569

    谷歌学术一个 

  • Norton TA, Parker SL, Zacher H, Ashkanasy NM (2015) Employee green behavior: A theoretical framework, multilevel review, and future research agenda. Organ Environ 28(1):103–125

    谷歌学术一个 

  • Ones DS, Dilchert S (2012) Environmental sustainability at work: A call to action. Ind Organ Psychol 5(4):444–466

    谷歌学术一个 

  • Oreg S, Vakola M, Armenakis A (2011) Change recipients’ reactions to organizational change: A 60-year review of quantitative studies. J Appl Behav Sci 47(4):461–524

    谷歌学术一个 

  • Paillé P, Boiral O (2013) Pro-environmental behavior at work: Construct validity and determinants. J Environ Psychol 36:118–128

    谷歌学术一个 

  • Paillé P, Raineri N (2015) Linking perceived corporate environmental policies and employees eco-initiatives: The influence of perceived organizational support and psychological contract breach. J Bus Res 68(11):2404–2411

    谷歌学术一个 

  • Paillé P, Boiral O, Chen Y (2013) Linking environmental management practices and organizational citizenship behaviour for the environment: a social exchange perspective. Int J Hum Resour Manag 24(18):3552–3575

    谷歌学术一个 

  • Paillé P, Valéau P, Carballo-Penela A (2023) Green rewards for optimizing employee environmental performance: Examining the role of perceived organizational support for the environment and internal environmental orientation. J Environ Plan Manag 66(14):2810–2831

    谷歌学术一个 

  • Podsakoff PM, MacKenzie SB, Podsakoff NP (2012) Sources of method bias in social science research and recommendations on how to control it. Annu Rev Psychol 63:539–569

    考研一个 谷歌学术一个 

  • Raineri N, Paillé P (2016) Linking corporate policy and supervisory support with environmental citizenship behaviors: The role of employee environmental beliefs and commitment. J Bus Ethics 137:129–148

    谷歌学术一个 

  • Rasheed MI, Hameed Z, Kaur P, Dhir A (2024) Too sleepy to be innovative? Ethical leadership and employee service innovation behavior: A dual-path model moderated by sleep quality. Hum Relat 77(6):739–767

    谷歌学术一个 

  • Reimann M, Guzy J (2017) Psychological contract breach and employee health: The relevance of unmet obligations for mental and physical health. Rev de Psicol.ía del Trab y de las Organizaciones 33(1):1–11

    谷歌学术一个 

  • Robertson JL, Barling J (2013) Greening organizations through leaders’ influence on employees’ pro‐environmental behaviors. J Organ Behav 34(2):176–194

    谷歌学术一个 

  • Rousseau DM (1989) Psychological and implied contracts in organizations. Empl Respons Rights J 2(2):121–139

    谷歌学术一个 

  • Rousseau DM, McLean Parks J (1993) The contracts of individuals and organizations. Res Organ Behav 15:1–43

    谷歌学术一个 

  • Rousseau DM, Schalk R (2000) Psychological contracts in employment: Cross-national perspectives.贤者出版社

  • Salancik GR, Pfeffer J (1978) A social information processing approach to job attitudes and task design. Adm Sci Q 23(2):224–253

    中科院一个 考研一个 谷歌学术一个 

  • Shoss MK, Su S, Schlotzhauer AE, Carusone N (2023) Working hard or hardly working? An examination of job preservation responses to job insecurity. J Manag 49(7):2387–2414

    谷歌学术一个 

  • Shrestha YR, Ben-Menahem SM, von Krogh G (2019) Organizational decision-making structures in the age of artificial intelligence. Calif Manag Rev 61(4):66–83

    谷歌学术一个 

  • Shrout PE, Bolger N (2002) Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods 7(4):422–445

    考研一个 谷歌学术一个 

  • Suriyankietkaew S, Avery G (2016) Sustainable leadership practices driving financial performance: Empirical evidence from Thai SMEs. Sustainability 8(4):327

    谷歌学术一个 

  • Sverke M, LÃ¥stad L, Hellgren J, Richter A, Näswall K (2019) A meta-analysis of job insecurity and employee performance: Testing temporal aspects, rating source, welfare regime, and union density as moderators. Int J Environ Res Public Health 16(14):2536

    考研一个 考研中心一个 谷歌学术一个 

  • Tekleab AG, Laulié L, De Vos A, De Jong JP, Coyle-Shapiro JA (2020) Contextualizing psychological contracts research: A multi-sample study of shared individual psychological contract fulfilment. Eur J Work Organ Psychol 29(2):279–293

    谷歌学术一个 

  • Tian H, Zhang J, Li J (2020) The relationship between pro-environmental attitude and employee green behavior: the role of motivational states and green work climate perceptions. Environ Sci Pollut Res 27(7):7341–7352

    谷歌学术一个 

  • Tomprou M, Rousseau DM, Hansen SD (2015) The psychological contracts of violation victims: A post‐violation model. J Organ Behav 36(4):561–581

    谷歌学术一个 

  • Triandis HC (1995) Individualism & collectivism.西景出版社

  • Tsui AS, Nifadkar SS, Ou AY (2007) Cross-national, cross-cultural organizational behavior research: Advances, gaps, and recommendations. J Manag 33(3):426–478

    谷歌学术一个 

  • Tu Y, Li Y, Zuo W (2023) Arousing employee pro‐environmental behavior: A synergy effect of environmentally specific transformational leadership and green human resource management. Hum Resour Manag 62(2):159–179

    谷歌学术一个 

  • Vander Elst T, De Cuyper N, Baillien E, Niesen W, De Witte H (2014) Perceived control and psychological contract breach as explanations of the relationships between job insecurity, job strain and coping reactions: Towards a theoretical integration. Stress Health 30(3):222–235

    谷歌学术一个 

  • Wilson HJ, Daugherty PR (2018) Collaborative intelligence: Humans and AI are joining forces. Harv Bus Rev 96(4):114–123

    谷歌学术一个 

  • Wolke D, Waylen A, Samara M, Steer C, Goodman R, Ford T, Lamberts K (2009) Selective drop-out in longitudinal studies and non-biased prediction of behaviour disorders. Br J Psychiatry 195(3):249–256

    考研一个 考研中心一个 谷歌学术一个 

  • Yang D, Law KS, Tang G (2023) Not all pro-environmental initiatives can increase pro-environmental behavior: An empirical examination of employees’ pro-environmental attributions. J Environ Psychol 92:102177

    谷歌学术一个 

  • Yuriev A, Boiral O, Francoeur V, Paillé P (2018) Overcoming the barriers to pro-environmental behaviors in the workplace: A systematic review. J Clean Prod 182:379–394

    谷歌学术一个 

  • Zacher H, Rudolph CW, Katz IM (2023) Employee green behavior as the core of environmentally sustainable organizations. Annu Rev Organ Psychol Organ Behav 10(1):465–494

    谷歌学术一个 

  • Zhang Y, Dong Y, Wang R, Jiang J (2024) Can organizations shape eco-friendly employees? Organizational support improves pro-environmental behaviors at work. J Environ Psychol 93:102200

    谷歌学术一个 

  • Zhao H, Wayne SJ, Glibkowski BC, Bravo J (2007) The impact of psychological contract breach on work‐related outcomes: A meta‐analysis. Pers Psychol 60(3):647–680

    谷歌学术一个 

  • Zhong M, Wayne SJ, Michel EJ (2023) When the past and the present collide: contrast effect of sequential psychological contract breaches on employee outcomes. J Manag 49(3):913–943

    谷歌学术一个 

下载参考资料

致谢

This study was supported by the BK21 FOUR program (Education and Research Center for Securing Cyber-Physical Space) through the National Research Foundation (NRF) funded by the Ministry of Education of Korea (5199990314137).

作者信息

作者和单位

  1. Professor at the College of Business Administration, University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan, 44610, South Korea

    金秉植

  2. Associate Professor at the School of Industrial Management Korea University of Technology and Education, 1600, Chungjeol-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, South Korea

    Min-Jik Kim

  3. Professor at the Department of Industrial Security Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, 06974, Seoul, South Korea

    李如乐

贡献

Dr. Byung-Jik Kim contributed by writing the original draft of the manuscript and participating in the conceptualization, data collection, formal analysis, and methodology. Dr. Julak Lee and Dr. Min-Jik Kim contributed to the conceptualization, analysis, revision, and editing of the manuscript. All authors contributed to the writing of the final manuscript and have read and agreed to the published version of the manuscript. All members of this research team contributed to the management or administration of this paper.

通讯作者

通讯至Min-Jik Kim或者李如乐

道德声明

利益竞争

作者声明没有竞争利益。

道德认可

The survey conducted in this study adhered to the standards outlined in the Declaration of Helsinki. The Yonsei University Institutional Review Board granted ethical approval. Approval number: 202208-HR-2975-01 Date of approval: 2022. 08. 15 Scope of approval: All research variables in this study.

知情同意书

获得。Every participant was provided with information about the objective and extent of this study, as well as the intended utilization of the data.The respondents willingly and freely participated in the study.Their identities were kept confidential, and their involvement was optional.Prior to participating in the survey, all subjects included in the study provided informed consent.Informed consent was obtained from March 2022 to April 2022 through the website of the research company (Macromil Embrain).The scope of the consent covered participation, data use, and consent to publish.Online explanatory statement and documents related to exemption from written consent.Since the explanatory statement requires consent three times, it was submitted on the first, second, and third questionnaires.By default, written consent was waived.其理由如下。This survey was conducted through Macromil Embrain, a research company that has the largest panel in Korea (25 years of experience in the industry).Individuals belonging to the panel of Macromil Embrain registered in the company’s survey response system and agreed to provide their information and survey content.Then, they logged in to the system and responded to the survey.At this time, the research company announced the contents of the researcher’s survey, and panels interested in the survey participated in the survey.Alternatively, the research company asked those who were qualified to participate in the survey (e.g., office workers at a domestic company) via e-mail or text message about their intention to participate in the survey.This process was conducted entirely online, and it was practically impossible to obtain the consent of the research subjects because the researcher did not know which panel would respond to the questionnaire.Sufficient voluntary participation in research was ensured, and explanations regarding the guarantee of withdrawal and suspension of participation were supervised by the aforementioned research company.A research company manages this company’s website by asking for consent when an individual signs up and registers.When a person signs up for this company’s service as a panel, these matters are explained in detail and consent is obtained.Only those who gave their consent participated in the survey.The condition for selecting study subjects was that they must have been adult employees working for domestic companies.If participants were adult employees working for a domestic company, there were no special conditions such as regular or non-regular workers.People excluded from the study were those who were not currently working or who did not have the intellectual ability to understand and respond appropriately to the questionnaire.Also, people with limited ability to give consent for research or those who were vulnerable were not included as research subjects.Only those panels who had voluntarily registered to participate in the survey with the research company (Macromil Embrain) took part in the survey.In particular, when issuing a recruitment notice, the general subject and risks of the study were noted, and personal privacy was ensured during recruitment.Steps were taken to ensure the protection and confidentiality of participants.We did not include vulnerable research subjects.Vulnerability could be judged voluntarily by survey respondents.In addition, only those who met the research company’s criteria (mentioned above) could participate in the survey.The process and contents of the second and third surveys were the same as in the first survey.

附加信息

出版商的注释施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。

补充资料

引用这篇文章

Check for updates. Verify currency and authenticity via CrossMark

Kim, BJ., Kim, MJ. & Lee, J. Code green: ethical leadership’s role in reconciling AI-induced job insecurity with pro-environmental behavior in the digital workplace.

Humanit Soc Sci Commun11 , 1627 (2024). https://doi.org/10.1057/s41599-024-04139-2下载引文

已收到

  • :2024 年 7 月 30 日

  • :2024 年 11 月 13 日

  • :2024 年 11 月 29 日

  • :https://doi.org/10.1057/s41599-024-04139-2https://doi.org/10.1057/s41599-024-04139-2

关于《绿色代码:道德领导力在协调人工智能引起的工作不安全感与数字工作场所的环保行为方面的作用》的评论


暂无评论

发表评论

摘要

这篇研究文章“绿色代码:道德领导力在调和人工智能引起的工作不安全感与数字工作场所的环保行为中的作用”探讨了道德领导力如何减轻人工智能 (AI) 对员工工作安全感的负面影响,并促进环境可持续性行为。该研究调查了一个模型,其中道德领导力影响员工的一致性感,从而减少他们与人工智能驱动的工作不安全感相关的焦虑,并增加他们对环保活动的参与度。### 关键概念:1. **道德领导**:这涉及具有道德正直、公平、透明和关心他人福祉的领导者。道德领导者通过遵守激励员工效仿的道德标准来树立积极的基调。2. **人工智能引发的工作不安全感**:由于在工作场所采用人工智能技术而导致的工作安全感的威胁或不确定性。3. **环保行为 (PEB)**:个人为减少环境危害而采取的行动,例如回收、节能和可持续交通选择。4. **连贯感(SOC)**:指一个人认为生活事件是可管理的、有意义的和可理解的。强烈的一致性感可以增强心理健康和抵御工作不稳定等压力的能力。### 研究模型:该研究提出了一个模型,其中道德领导力对员工的 SOC 产生积极影响,从而减轻人工智能引起的工作不安全感对环境行为的负面影响:\[ \text{道德领导力} \rightarrow \text{连贯感 (SOC)} \rightarrow \text{减少工作不安全感焦虑} \rightarrow \text{增加环保行为 (PEB)} \]### 假设:研究人员假设:1. 道德领导力对 SOC 产生积极影响。2. SOC介导道德领导力与减少工作不安全焦虑之间的关系。3. 工作不安全焦虑的减少导致 PEB 的增加。### 方法论:该研究采用定量研究设计,通过知名市场研究公司(Macromil Embrain)协助的在线调查收集了为国内公司工作的成年员工的数据。#### 数据收集:- **样本量**:1000 名参与者- **数据收集工具**:通过 Macromil Embrain 平台管理的在线调查问卷。- **道德考虑**:已获得知情同意,且参与是自愿的。整个过程中都维护了参与者的隐私。### 结果和讨论:研究结果表明,道德领导力显着提高员工的 SOC,进而减少人工智能实施引发的工作不安全焦虑。焦虑的减少与员工环保行为的提高呈正相关。### 对实践的影响:1. **组织政策**:组织应优先培养道德文化,以支持员工福祉和环境可持续性。2. **培训计划**:强调道德原则的领导力培训计划可以增强领导者有效管理人工智能引起的工作不安全感的能力。3. **员工支持系统**:实施强大的支持系统,例如咨询服务或职业发展机会,可以帮助员工应对向人工智能驱动的工作场所的过渡。### 结论:道德领导力在减轻人工智能采用的负面心理影响和鼓励员工采取环境可持续行为方面发挥着至关重要的作用。通过道德实践促进 SOC,组织可以打造一支更有弹性的员工队伍,致力于个人福祉和环境管理。---本摘要强调了道德领导力在解决人工智能等技术进步带来的工作不安全问题,同时在数字工作场所中促进环保行为的重要性。