英语轻松读发新版了,欢迎下载、更新

用人工智能重新思考材料创新

2025-01-16 10:05:45 英文原文

作者:Alyssa Hughes (2ADAPTIVE LLC dba 2A Consulting)

A grid of colorful, abstract shapes on a black background. Each cell in the grid features a unique three-dimensional geometric pattern, showcasing a variety of colors including green, red, blue, and purple.

材料创新是重大技术突破的关键驱动力之一。20 世纪 80 年代钴酸锂的发现为当今的锂离子电池技术奠定了基础。它现在为现代手机和电动汽车提供动力,影响着数十亿人的日常生活。设计更高效的太阳能电池、用于电网级储能的更便宜的电池以及从大气中回收二氧化碳的吸附剂也需要材料创新。 

为目标应用寻找新材料就像大海捞针一样。从历史上看,这项任务是通过昂贵且耗时的实验试错来完成的。最近,大型材料数据库的计算筛选使研究人员能够加快这一过程。尽管如此,找到具有所需特性的少数材料仍然需要筛选数百万候选材料。 

今天,在一个论文发表于自然(在新选项卡中打开),我们分享 MatterGen,这是一种生成式人工智能工具,可以从不同的角度解决材料发现问题。它不是筛选候选人,而是根据应用程序的设计要求提示直接生成新颖的材料。它可以生成具有所需化学、机械、电子或磁性特性以及不同约束组合的材料。MatterGen 实现了生成式 AI 辅助材料设计的新范例,可以有效地探索材料,超越有限的已知材料。 

An illustration comparing screening and generation at the task of finding shapes that have a given number of edges and color. A blue pentagon is shown with a question mark at the top of the illustration, denoting this as the target for the task. To the left, a collection of colored shapes that does not include a blue pentagon is poured into a screening funnel. Two green pentagons pass through the funnel. To the right of the illustration, a laptop representing MatterGen inputs a target of 5 edges and the color blue.  Three green and one blue pentagon are produced in addition to a single blue hexagon.
数字1:材料设计筛选和生成方法的示意图 

一种新颖的扩散架构 

MatterGen 是一种在材料 3D 几何结构上运行的扩散模型。就像图像扩散模型通过修改噪声图像中的像素颜色来根据文本提示生成图片一样,MatterGen 通过调整随机结构的位置、元素和周期晶格来生成建议的结构。扩散架构专为处理周期性和 3D 几何等特殊特性的材料而设计。 

An illustration showing a two-dimensional crystal structure at various states in the reverse diffusion process from a random to a stable material (left to right). Three additional illustrations are shown for denoising processes that are conditioned on the chemistry, symmetry and magnetic density of the material.
数字2:MatterGen 的示意图:用于生成新颖且稳定材料的扩散模型。MatterGen 可以进行微调到根据不同的设计要求(例如特定化学、晶体对称性或材料特性)生成材料。 MatterGen 的基础模型在生成新颖、稳定、多样化的材料方面实现了最先进的性能(图 3)。

它接受了来自 608,000 个稳定材料的训练材料项目(在新选项卡中打开)(议员)和亚历山大港(在新选项卡中打开)(亚历克斯)数据库。性能的提高可以归因于架构的进步,以及我们训练数据的质量和大小。 

A figure comparing the percentage of samples generated that are stable, novel and unique for several methods. From most performant to least performant, the figure ranks methods in order of MatterGen (alex-mp), MatterGen (mp), DiffCSP (mp), CDVAE (mp), P-G-SchNet (mp), G-SchNet (mp), FTCP (mp).
数字3:MatterGen 和其他方法在生成稳定、独特和新颖结构方面的性能。每种方法的训练数据集在括号中表示。紫色条突出显示仅由 MatterGen 架构带来的性能改进,而青色条则突出显示也来自更大训练数据集的性能改进。 

MatterGen 可以使用标记的数据集进行微调,以在任何所需条件下生成新颖的材料。我们展示了在给定目标化学和对称性以及电子、磁性和机械性能约束的情况下生成新型材料的示例(图 2)。一个 

优于筛选 

A figure comparing MatterGen and traditional screening in the task of generating stable, unique and novel structures with a bulk modulus greater than 400 giga pascal. The figure shows that the number of such structures discovered with screening plateaus at approximately 40, while for MatterGen this number continues to increase to above 100 for 175 density functional theory calculations.
数字4:MatterGen(青色)和传统筛选(黄色)在寻找满足体积模量大于 400 GPa 的设计要求的新颖、稳定和独特结构方面的表现。 

MatterGen 相对于筛选的主要优势是它能够访问未知材料的全部空间。在图 4 中,我们表明 MatterGen 继续生成更多新颖的候选材料,例如,其体积模量高于 400 GPa,难以压缩。相比之下,由于已知的候选者筋疲力尽,筛选基线饱和。 

焦点:微软研究通讯

微软研究院通讯

与 Microsoft 研究社区保持联系。

处理成分紊乱 

An illustration of a two-dimensional cubic crystal lattice containing two distinct atom types. The primitive cell is ordered and each atomic site is occupied by a single atom type. Another crystal lattice is shown to the right and is compositionally disordered such that each atom site contains either atom type with a probability of one half.
数字5:构图障碍的插图。左图:完美的晶体,没有成分紊乱,并且具有重复的晶胞(黑色虚线)。右图:成分无序的晶体,其中每个位点有 50% 的概率是黄色和青色原子。 

成分无序(图 5)是一种常见现象,其中不同原子可以在合成材料中随机交换其晶体位置。最近(在新选项卡中打开),社区一直在探索在计算设计材料的背景下材料的新颖性意味着什么,因为广泛使用的算法不会区分结构对,其中唯一的区别是各自位点中相似元素的排列。

我们通过引入一种考虑组合无序的新结构匹配算法,为该问题提供了初步解决方案。该算法评估一对结构是否可以被识别为同一底层组成无序结构的有序近似。这提供了新颖性和独特性的新定义,我们在计算评估指标中采用了该定义。我们也让我们的算法公开(在新选项卡中打开)作为我们评估包的一部分。 

实验实验室验证 

A photo that shows a scientist in a laboratory working at a bench and holding a small sample with tweezers.
图 6:所提出的化合物 TaCr2O6 的实验验证 一个 除了广泛的计算评估之外,我们还通过实验综合验证了 MatterGen 的功能。

与李文杰教授领导的团队合作深圳先进技术研究院(在新选项卡中打开)中国科学院SIAT(中国科学院SIAT),我们合成了一种新型材料TaCr2O6,其结构是在200 GPa的体积模量值上调节模型后由MatterGen生成的。合成材料的结构与 MatterGen 提出的结构一致,但需要注意 Ta 和 Cr 之间的成分无序。此外,我们通过实验测量了 169 GPa 的体积模量,与设计规范给出的 200 GPa 相比,相对误差低于 20%,从实验角度来看非常接近。如果类似的结果可以转化到其他领域,将对电池、燃料电池等的设计产生深远的影响。一个 

AI模拟器和发电机飞轮 

MatterGen 为 AI 加速材料设计提供了新机会,补充了我们的 AI 模拟器物质模拟。MatterSim 遵循第五范式科学发现,显着加快材料特性模拟的速度。MatterGen 反过来又通过属性引导生成加快了探索新候选材料的速度。MatterGen 和 MatterSim 可以协同工作作为飞轮来加速新型材料的模拟和探索。

使 MatterGen 可用 

我们相信对材料设计产生影响的最佳方式是将我们的模型向公众开放。我们发布了MatterGen 的源代码(在新选项卡中打开)根据麻省理工学院的许可,以及训练和微调数据。我们欢迎社区使用我们的模型并在其基础上进行构建。 

展望未来 

MatterGen 代表了生成式人工智能技术实现的材料设计新范式。与基于筛选的方法相比,它探索了更大的材料空间。通过提示引导材料探索也更加高效。类似于生成式人工智能如何影响药物发现(在新选项卡中打开),它将对我们如何设计电池、磁铁和燃料电池等广泛领域的材料产生深远的影响。 

我们计划继续与外部合作者合作,进一步开发和验证该技术。– 在约翰霍普金斯大学应用物理实验室 (APL),我们致力于探索有潜力推动新型任务材料发现的工具。这就是为什么我们有兴趣了解 MatterGen 对材料发现可能产生的影响,”领导 APL 多项材料发现工作的计算材料科学家 Christopher Stiles 说道。

致谢 

这项工作是高度协作的团队努力的结果微软科学人工智能研究院。完整作者包括:克劳迪奥·泽尼,罗伯特·平斯勒,丹尼尔·祖格纳,安德鲁·福勒,马修·霍顿、 付祥、王子龙, Aliaksandra Shysheya, Jonathan Crabbé,上田翔子, 罗伯托·索尔迪略,孙立新,杰克·史密斯,阮碧莲,汉内斯·舒尔茨,莎拉·刘易斯,黄金伟,子恒路, 周一池,韩阳,郝红霞,李洁兰, 杨春雷, 李文杰,富冈良太,谢天. . . . . . . . . . . . . . . 

关于《用人工智能重新思考材料创新》的评论


暂无评论

发表评论

摘要

材料创新对于技术进步至关重要,锂离子电池的发展就是例证。一种名为 MatterGen 的新型生成式人工智能工具旨在通过根据设计要求直接生成新颖材料而不是筛选现有候选材料来加速材料发现。该方法利用专为 3D 材料几何形状量身定制的扩散模型,从而能够高效探索已知材料之外的区域。MatterGen 经过大量数据集的训练,其性能优于传统方法,并通过合成新化合物 TaCr2O6 进行了实验验证。该工具向公众开放,以促进电池和燃料电池设计等领域的进一步进步。