作者:Zhong, Ellen D.
Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).
Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).
Frank, J. & Ourmazd, A. Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 100, 61–67 (2016).
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).
Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).
Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e36861 (2018).
Chua, E. Y. D. et al. Better, faster, cheaper: recent advances in cryo-electron microscopy. Annu. Rev. Biochem. 91, 1–32 (2022).
Oikonomou, C. M. & Jensen, G. J. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86, 873–896 (2017).
Galaz-Montoya, J. G. & Ludtke, S. J. The advent of structural biology in situ by single particle cryo-electron tomography. Biophysics Rep. 3, 17–35 (2017).
Xue, L. et al. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610, 205–211 (2022).
Rangan, R. et al. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Nat. Methods 21, 1537–1545 (2024).
Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).
Zhong, E. D., Bepler, T., Davis, J. H. & Berger, B. Reconstructing continuous distributions of 3D protein structure from cryo-EM images. In International Conference on Learning Representations (ICLR, 2020).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Davis, J. H. et al. Modular assembly of the bacterial large ribosomal subunit. Cell 167, 1610–1622 (2016).
Plaschka, C., Lin, P. -C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nature 546, 617–621 (2017).
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).
DAmico, K. A. et al. Structure of a membrane tethering complex incorporating multiple snares. Nat. Struct. Mol. Biol. 31, 246–254 (2024).
Tan, Y. Z. et al. CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7. Life Sci. Alliance 5, e202201527 (2022).
Vallese, F. et al. Architecture of the human erythrocyte ankyrin-1 complex. Nat. Struct. Mol. Biol. 29, 706–718 (2022).
Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM refinement with m visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 18, 186–193 (2021).
Bojanowski, P., Joulin, A., Lopez-Paz, D. & Szlam, A. Optimizing the latent space of generative networks. In Proc. 35th International Conference on Machine Learning Vol. 80 (eds Dy, J. & Krause, A.) 600–609 (ICML, 2018).
Edelberg, D. G. & Lederman, R. R. Using VAEs to learn latent variables: observations on applications in cryo-EM. Preprint at https://arxiv.org/abs/2303.07487 (2023).
Luo, Z., Ni, F., Wang, Q. & Ma, J. OPUS-DSD: deep structural disentanglement for cryo-EM single-particle analysis. Nat. Methods 20, 1729–1738 (2023).
Gilles, M. A. T. & Singer, A. Cryo-EM heterogeneity analysis using regularized covariance estimation and kernel regression. PNAS 122, 9 (2025).
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. CryoDRGN2: ab initio neural reconstruction of 3D protein structures from real cryo-EM images. In Proceedings of the IEEE/CVF International Conference on Computer Vision 4066–4075 (CVPR, 2021).
Herreros, D. et al. Estimating conformational landscapes from cryo-em particles by 3D zernike polynomials. Nat. Commun. 14, 154 (2023).
Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nat. Commun. 12, 1240 (2021).
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Dashti, A. et al. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat. Commun. 11, 4734 (2020).
Maji, A. et al. Propagation of conformational coordinates across angular space in mapping the continuum of states from cryo-EM data by manifold embedding. J. Chem. Inf. Model. 60, 2484–2491 (2020).
Moscovich, A., Halevi, A., Andén, J. & Singer, A. Cryo-EM reconstruction of continuous heterogeneity by laplacian spectral volumes. Inverse Probl. 36, 024003 (2020).
Lederman, R. R. & Singer, A. Continuously heterogeneous hyper-objects in cryo-EM and 3-D movies of many temporal dimensions. Preprint at https://arxiv.org/abs/1704.02899 (2017).
Gupta, H., Phan, T. H., Yoo, J. & Unser, M. Multi-CryoGAN: reconstruction of continuous conformations in cryo-EM using generative adversarial networks. In European Conference on Computer Vision (ECCV, 2020).
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Exploring generative atomic models in cryo-EM reconstruction. In NeurIPS Workshop on Machine Learning for Structural Biology (MLSB, 2020).
Jin, Q. et al. Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. Structure 22, 496–506 (2014).
Harastani, M., Eltsov, M., Leforestier, A. & Jonic, S. Hemnma-3D: cryo electron tomography method based on normal mode analysis to study continuous conformational variability of macromolecular complexes. Front. Mol. Biosci. 8, 663121 (2021).
Hamitouche, I. & Jonic, S. DeepHEMNMA: ResNet-based hybrid analysis of continuous conformational heterogeneity in cryo-EM single particle images. Front. Mol. Biosci. 9, 965645 (2022).
Nashed, Y et al. Heterogeneous reconstruction of deformable atomic models in cryo-em. Preprint at https://doi.org/10.48550/arXiv.2209.15121 (2022).
Scheres, S. H. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).
Elmlund, D. & Elmlund, H. Simple: software for ab initio reconstruction of heterogeneous single-particles. J. Struct. Biol. 180, 420–427 (2012).
Scheres, S. H. Relion: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
Brubaker, M. A., Punjani, A., & Fleet, D. J. Building proteins in a day: efficient 3D molecular reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3099–3108 (CVPR, 2015).
Ho, C. -M. et al. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Nat. Methods 17, 79–85 (2020).
Su, C.-C. et al. A ‘build and retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins. Nat. Methods 18, 69–75 (2021).
Levy, A., Wetzstein, G., Martel, J. N., Poitevin, F. & Zhong, E. D. Amortized inference for heterogeneous reconstruction in cryo-EM. In Advances in Neural Information Processing Systems (NeurIPS, 2022).
Shekarforoush, S., Lindell, D. B., Brubaker, M. A. & Fleet, D. J. Cryospin: improving ab-initio cryo-EM reconstruction with semi-amortized pose inference. In Advances in Neural Information Processing Systems (NeurIPS, 2024).
Tang, G. et al. Eman2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 187, 139–151 (2012).
Bharat, T. A. & Scheres, S. H. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in relion. Nat. Protoc. 11, 2054–2065 (2016).
Harastani, M., Eltsov, M., Leforestier, A. & Jonic, S. TomoFlow: analysis of continuous conformational variability of macromolecules in cryogenic subtomograms based on 3D dense optical flow. J. Struct. Biol. 434, 167381 (2022).
Himes, B. A. & Zhang, P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15, 955–961 (2018).
Chen, M. et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 16, 1161–1168 (2019).
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).
Powell, B. M. & Davis, J. H. Learning structural heterogeneity from cryo-electron subtomograms with tomoDRGN. Nat. Methods 21, 1525–1536 (2024).
Zhu, J. et al. A minority of final stacks yields superior amplitude in single-particle cryo-EM. Nat. Commun. 14, 7822 (2023).
Kingma, D. P. & Welling M. Auto-encoding variational Bayes. In International Conference on Learning Representations (ICLR, 2014)
Kinman, L. F., Powell, B. M., Zhong, E. D., Berger, B. & Davis, J. H. Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN. Nat. Protoc. 18, 319–339 (2023).
Jeon, M. et al. CryoBench: diverse and challenging datasets for the heterogeneity problem in cryo-EM. In Advances in Neural Information Processing Systems (NeurIPS, 2024).
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Ingraham, J. B. et al. Illuminating protein space with a programmable generative model. Nature 623, 1070–1078 (2023).
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).
Vulović, M. et al. Image formation modeling in cryo-electron microscopy. J. Struct. Biol. 183, 19–32 (2013).
Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. In Advances in Neural Information Processing Systems (NeurIPS, 2020).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision 770–778 (CVPR, 2016).
Paszke A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS, 2019).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In International Conference on Learning Representations (ICLR, 2015)
Yershova, A., Jain, S., Lavalle, S. M. & Mitchell, J. C. Generating uniform incremental grids on SO(3) using the hopf fibration. Int. J. Rob. Res. 29, 801–812 (2010).
Gorski, K. M. et al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759 (2005).
Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus vp6. eLife 4, e06980 (2015).
Bharat, T. A., Russo, C. J., Löwe, J., Passmore, L. A. & Scheres, S. H. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23, 1743–1753 (2015).
Pettersen, E. F. et al. Ucsf chimerax: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
Klindt, D. A., Hyvarinen, A., Levy, A., Miolane, N. & Poitevin, F. Towards interpretable cryo-EM: disentangling latent spaces of molecular conformations. Front. Mol. Biosci. 11, 1393564 (2024).
Zhou, Y., Barnes, C., Lu, J., Yang, J. & Li, H. On the continuity of rotation representations in neural networks. In Proc. IEEE/CVF International Conference on Computer Vision 5745–5753 (CVPR, 2019).
Levy, A. et al. CryoAI: amortized inference of poses for ab initio reconstruction of 3D molecular volumes from real cryo-EM images. In European Conference on Computer Vision 540–557 (ECCV, 2022).
Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80s ribosome bound to the anti-protozoan drug emetine. eLife 3, e03080 (2014).
Burt, A. et al. An image processing pipeline for electron cryo-tomography in RELION-5. FEBS Open Bio 14, 1788–1804 (2024).
Levy, A. et al. Input data for the DSL1/SNARE complex in cryoDRGN-AI. Zenodo https://doi.org/10.5281/zenodo.14853184 (2025).
Levy, A. et al. Input data for the V-ATPase complex in cryoDRGN-AI. Zenodo https://doi.org/10.5281/zenodo.14853225 (2025).
Levy, A. et al. Input data for the mycoplasma pneumoniae 70s ribosome in cryoDRGN-AI. Zenodo https://doi.org/10.5281/zenodo.14853246 (2025).
Levy, A. et al. Input synthetic data for 1D motion in cryoDRGN-AI. Zenodo https://doi.org/10.5281/zenodo.14853257 (2024).
Levy, A. et al. Input synthetic data for the 80s ribosome in cryoDRGN-AI. Zenodo https://doi.org/10.5281/zenodo.14853270 (2025).
Levy, A. et al. Output data for cryoDRGN-AI. Zenodo https://doi.org/10.5281/zenodo.14847271 (2025).
Zhong, E. D. et al. ml-struct-bio/cryodrgn: v3.4.3v3.4.3: making movies, improving filtering interface, and fixes to landscape analysis. Zenodo https://doi.org/10.5281/zenodo.14538433 (2024).