General reactive element-based machine learning potentials for heterogeneous catalysis

2025-09-23 10:40:02 英文原文

作者:Hu, P.

References

  1. Liu, Z.-P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    Article  CAS  Google Scholar 

  3. Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).

    Article  Google Scholar 

  4. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  PubMed  Google Scholar 

  5. Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–12840 (2017).

    Article  CAS  Google Scholar 

  6. Zuo, Y. et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Huang, S.-D., Shang, C., Zhang, X.-J. & Liu, Z.-P. Material discovery by combining stochastic surface walking global optimization with a neural network. Chem. Sci. 8, 6327–6337 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma, S., Shang, C. & Liu, Z.-P. Heterogeneous catalysis from structure to activity via SSW-NN method. J. Chem. Phys. 151, 050901 (2019).

    Article  Google Scholar 

  9. Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article  CAS  Google Scholar 

  10. Zhang, Y., Xia, J. & Jiang, B. Physically motivated recursively embedded atom neural networks: incorporating local completeness and nonlocality. Phys. Rev. Lett. 127, 156002 (2021).

    Article  PubMed  CAS  Google Scholar 

  11. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Batatia, I. et al. The design space of E(3)-equivariant atom-centred interatomic potentials. Nat. Mach. Intell. 7, 56–67 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Young, T. A., Johnston-Wood, T., Deringer, V. L. & Duarte, F. A transferable active-learning strategy for reactive molecular force fields. Chem. Sci. 12, 10944–10955 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Smith, J. S. et al. Automated discovery of a robust interatomic potential for aluminum. Nat. Commun. 12, 1257 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xu, J., Xie, W., Han, Y. & Hu, P. Atomistic insights into the oxidation of flat and stepped platinum surfaces using large-scale machine learning potential-based grand-canonical Monte Carlo. ACS Catal. 12, 14812–14824 (2022).

    Article  CAS  Google Scholar 

  16. Liu, Y. & Guo, H. A Gaussian process based Δ-machine learning approach to reactive potential energy surfaces. J. Phys. Chem. A 127, 8765–8772 (2023).

    Article  PubMed  CAS  Google Scholar 

  17. Nandi, A., Qu, C., Houston, P. L., Conte, R. & Bowman, J. M. Δ -machine learning for potential energy surfaces: a PIP approach to bring a DFT-based PES to CCSD(T) level of theory. J. Chem. Phys. 154, 051102 (2021).

    Article  PubMed  CAS  Google Scholar 

  18. Morrow, J. D., Gardner, J. L. A. & Deringer, V. L. How to validate machine-learned interatomic potentials. J. Chem. Phys. 158, 121501 (2023).

    Article  PubMed  CAS  Google Scholar 

  19. Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more: sampling chemical space with active learning. J. Chem. Phys. 148, 241733 (2018).

    Article  PubMed  Google Scholar 

  20. Schran, C. et al. Machine learning potentials for complex aqueous systems made simple. Proc. Natl Acad. Sci. USA 118, e2110077118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shi, Y.-F., Kang, P.-L., Shang, C. & Liu, Z.-P. Methanol synthesis from CO2/CO mixture on Cu–Zn catalysts from microkinetics-guided machine learning pathway search. J. Am. Chem. Soc. 144, 13401–13414 (2022).

    Article  PubMed  CAS  Google Scholar 

  22. Han, Y., Xu, J., Xie, W., Wang, Z. & Hu, P. Comprehensive study of oxygen vacancies on the catalytic performance of ZnO for CO/H2 activation using machine learning-accelerated first-principles simulations. ACS Catal. 13, 5104–5113 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Han, Y., Xu, J., Xie, W., Wang, Z. & Hu, P. Unravelling the impact of metal dopants and oxygen vacancies on syngas conversion over oxides: a machine learning-accelerated study of CO activation on Cr-doped ZnO surfaces. ACS Catal. 13, 15074–15086 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).

    Article  CAS  Google Scholar 

  25. Luo, L.-H., Huang, S.-D., Shang, C. & Liu, Z.-P. Resolving activation entropy of CO oxidation under the solid–gas and solid–liquid conditions from machine learning simulation. ACS Catal. 12, 6265–6275 (2022).

    Article  CAS  Google Scholar 

  26. Xie, W., Xu, J., Ding, Y. & Hu, P. Quantitative studies of the key aspects in selective acetylene hydrogenation on Pd(111) by microkinetic modeling with coverage effects and molecular dynamics. ACS Catal. 11, 4094–4106 (2021).

    Article  CAS  Google Scholar 

  27. Xie, W., Xu, J., Chen, J., Wang, H. & Hu, P. Achieving theory–experiment parity for activity and selectivity in heterogeneous catalysis using microkinetic modeling. Acc. Chem. Res. 55, 1237–1248 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Deng, B. et al. Systematic softening in universal machine learning interatomic potentials. NPJ Comput. Mater. 11, 9 (2025).

    Article  CAS  Google Scholar 

  29. Zeng, J., Cao, L., Xu, M., Zhu, T. & Zhang, J. Z. H. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat. Commun. 11, 5713 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schaaf, L. L., Fako, E., De, S., Schäfer, A. & Csányi, G. Accurate energy barriers for catalytic reaction pathways: an automatic training protocol for machine learning force fields. NPJ Comput. Mater. 9, 180 (2023).

    Article  Google Scholar 

  31. Bernstein, N., Csányi, G. & Deringer, V. L. De novo exploration and self-guided learning of potential-energy surfaces. NPJ Comput. Mater. 5, 99 (2019).

    Article  Google Scholar 

  32. Morrow, J. D. & Deringer, V. L. Indirect learning and physically guided validation of interatomic potential models. J. Chem. Phys. 157, 104105 (2022).

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, S. et al. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat. Chem. 16, 727–734 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chiang, Y. & Benner, P. mace-universal (Revision e5ebd9b). Hugging Face https://doi.org/10.57967/hf/1202 (2023).

  35. Liao, Y.-L., Wood, B. M., Das, A. & Smidt, T. EquiformerV2: improved equivariant transformer for scaling to higher-degree representations. In Twelfth International Conference on Learning Representations (2024).

  36. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article  PubMed  Google Scholar 

  37. Hauschild, A. et al. Normal-incidence X-ray standing-wave determination of the adsorption geometry of PTCDA on Ag(111): comparison of the ordered room-temperature and disordered low-temperature phases. Phys. Rev. B 81, 125432 (2010).

    Article  Google Scholar 

  38. Ruiz, V. G., Liu, W., Zojer, E., Scheffler, M. & Tkatchenko, A. Density-functional theory with screened van der Waals Interactions for the modeling of hybrid inorganic–organic systems. Phys. Rev. Lett. 108, 146103 (2012).

    Article  PubMed  Google Scholar 

  39. Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. Xu, L. & Mavrikakis, M. Adsorbate-induced adatom formation on lithium, iron, cobalt, ruthenium, and rhenium surfaces. JACS Au 3, 2216–2225 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xie, W. & Hu, P. Influence of surface defects on activity and selectivity: a quantitative study of structure sensitivity of Pd catalysts for acetylene hydrogenation. Catal. Sci. Technol. 11, 5212–5222 (2021).

    Article  CAS  Google Scholar 

  42. Wu, J., Chen, D., Chen, J. & Wang, H. Structural and composition evolution of palladium catalyst for CO oxidation under steady-state reaction conditions. J. Phys. Chem. C 127, 6262–6270 (2023).

    Article  CAS  Google Scholar 

  43. Li, X.-T., Chen, L., Shang, C. & Liu, Z.-P. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment. J. Am. Chem. Soc. 143, 6281–6292 (2021).

    Article  PubMed  CAS  Google Scholar 

  44. Baker, J. & Chan, F. The location of transition states: a comparison of Cartesian, Z-matrix, and natural internal coordinates. J. Comput. Chem. 17, 888–904 (1996).

    Article  CAS  Google Scholar 

  45. Cordero, B. et al. Covalent radii revisited. Dalton Trans. https://doi.org/10.1039/B801115J (2008).

  46. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  Google Scholar 

  47. Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).

    Article  PubMed  Google Scholar 

  48. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Article  CAS  Google Scholar 

  49. Mahoney, M. W. & Drineas, P. CUR matrix decompositions for improved data analysis. Proc. Natl Acad. Sci. USA 106, 697–702 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  52. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  PubMed  Google Scholar 

  53. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  55. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  56. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  57. Menon, S., Leines, G. & Rogal, J. pyscal: a Python module for structural analysis of atomic environments. J. Open Source Softw. 4, 1824 (2019).

    Article  Google Scholar 

  58. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  59. Wang, H.-F. & Liu, Z.-P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 130, 10996–11004 (2008).

    Article  PubMed  CAS  Google Scholar 

  60. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  61. Xie, W. Electronic structure calculations. Figshare https://doi.org/10.6084/m9.figshare.29484686.v1 (2025).

Download references

关于《General reactive element-based machine learning potentials for heterogeneous catalysis》的评论


暂无评论

发表评论

摘要

The provided text appears to be a summary or abstract of an academic paper or research article, possibly focused on computational chemistry and materials science, specifically dealing with the development and application of machine learning models for predicting interatomic potentials. Below is a structured summary of key points and details from the reference list: ### Key Points: 1. **Introduction and Background**: - The document discusses methods for modeling chemical systems using atom-centered symmetry functions. - It mentions the Spectral Neighbor Analysis Method (SNAP) and CUR matrix decomposition techniques for improving data analysis. 2. **Methodology**: - The use of machine learning, particularly neural networks, to predict interatomic potentials is highlighted. - A Python module named `pyscal` is used for structural analysis of atomic environments. - Computational tools like LAMMPS and the Atomic Simulation Environment (ASE) are mentioned for simulations. 3. **Computational Details**: - Ab initio calculations were performed using plane-wave basis sets with pseudopotentials, specifically noting methods by Kresse & Joubert. - Density functional theory (DFT) was used to model interactions in solids and surfaces, employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and DFT-D dispersion corrections. 4. **Data Analysis**: - The paper includes structural analysis using bond-orientational order parameters (Steinhardt's method). - Python libraries such as NumPy are utilized for array programming in computational tasks. 5. **Applications**: - The research covers a wide range of applications, including the study of catalytic reactions on metal surfaces and structural transitions induced by adsorbate molecules. - Specific examples include the influence of surface defects on catalytic activity and selectivity, as well as the evolution of catalyst structures under reaction conditions. ### References: - **Theoretical Foundations**: - Bartók et al. (2013) discuss representing chemical environments using symmetry functions. - Thompson et al. (2015) describe spectral neighbor analysis for generating quantum-accurate potentials. - **Software Tools**: - NumPy (Harris et al., 2020) is referenced for array programming and computational efficiency. - LAMMPS (Thompson et al., 2022) is highlighted as a flexible simulation tool for particle-based materials modeling. - **Computational Methods**: - Kresse & Joubert's method (1999) for projector augmented-wave (PAW) approach in DFT calculations. - Grimme et al. (2010) provide parameters for density functional dispersion correction (DFT-D). - **Structural Analysis**: - Steinhardt et al. (1983) introduce bond-orientational order parameters to analyze atomic structures. ### Conclusion: The document emphasizes the integration of advanced computational methods and machine learning techniques in materials science research, particularly focusing on developing accurate interatomic potential models for predicting complex chemical phenomena such as catalytic reactions at surfaces. The references provide a comprehensive list of theoretical frameworks, software tools, and computational methodologies used in this work.