作者:吴恩达
译自:Quora
我觉得机器学习需要的最重要的数学领域,降序排列:
I think the most important areas of math for machine learning are, in decreasing order:
除了这些,我觉得其他意义不大。我觉得信息论也是有用的。你可以在Coursera或者大多数大学找到这些课程。
After that, I think it falls off quickly. I’ve also found Information Theory helpful. You can find courses on all of these on Coursera or at most universities.
虽然很难争辩说不用学那么多数学,但是我觉得学好机器学习,或者拿到一个机器学习PhD,所需要的数学水平,这些年来一直在下降。这是因为这个领域越来越经验化(基于实验),没那么理论化了,特别是随着深度学习的兴起。
While it’s hard to argue against knowing more math, I think the level of math needed to do machine learning effectively, or to get a PhD in machine learning, has decreased over the years. This is because machine learning has become more empirical (based on experiments) and less theoretical, especially with the rise of deep learning.
作为PhD学生我曾经热爱实分析(real analysis),研究过微分几何(differential geometry),测度论(measure theory),以及代数几何(algebraic geometry)等。当然你知道这些肯定比不知道更好,但是你往往只有有限的时间,最好花更多的时间研究机器学习本身,甚至多花点时间研究构成人工智能系统的其他技术基础,比如构建大数据系统背后的算法,如何组织大型数据库,加上高性能计算(HPC (high performance computing))。
As a PhD student I had loved real analysis, and also studied differential geometry, measure theory, and algebraic geometry. While you’re certainly be better off knowing these areas than not, in a world in which you have limited time, consider just spending more time studying machine learning itself, and even studying some of the other technical foundations for building AI systems, such as the algorithms that underly building big data systems and how to organize giant databases, plus HPC (high performance computing).
祝好运!
Best of luck!
我现在的情况不是“数学基础不好”,而是缺乏“常识”,有太多知识空白,所以近期请了家教老师从高中数学开始补习。
如果你将来想从事机器学习和人工智能行业,那么你没有必要去从头开始学习数学,不要等到所有的东西都准备好了再去开始。比如你学到逻辑回归,你可能只需要了解logit分布的密度函数和分布函数,知道它的参数优化用到了极大似然估计法,还有一些求偏导数的知识,如果你学过大学的一些基本课程,这些应该不难理解吧?再比如knn模型,它根本就没有用到数学的推导过程,它更多的是一种优化策略的选择,所以你需要去理解kd树是如何搜索的。
我是一个文科生转计算机的,中途有多少坑我就不说了,之前我也是深陷于公式推导无法自拔(这些能让你的简历过面试官),轻视了实践,更何况现实中很少有机会给你去做模型,大多数时候都只是在处理各种业务逻辑,给领导背锅,一些杂七杂八的事情。