作者:Jon Fortt
你好,欢迎来到解码器呢我是乔恩·福特特(Jon Fortt)的CNBC记者,闭幕式:加班和创造者诺克斯堡LinkedIn上的流媒体系列。这是最后一集,我将在享用育儿假时为尼利亚(Nilay)提供客人的主持。在那之后,我们有一个令人兴奋的船员,他将接管我,所以请继续关注。
今天,我和罗宾AI的联合创始人兼首席执行官理查德·罗宾逊(Richard Robinson)交谈。理查德(Richard)有一个令人着迷的简历:他是伦敦备受瞩目的公司的公司律师,然后在2019年创立了罗宾(Robin),将人工智能工具带入法律职业,并使用人类律师和自动化软件专业知识。这意味着罗宾(Robin)早于Chatgpt于2022年推出的大生成AI繁荣。
听解码器,由边缘Nilay Patel关于大想法和其他问题。订阅这里呢
正如您将听到理查德所说的那样,他公司早期开发的工具基于几年前我们刚刚称为机器学习的相当传统的AI技术。但是,随着更强大的模型和聊天机器人爆炸改变了各种类型的行业,Robin AI正在扩大其野心。它不仅仅是使用AI将法律合同解析为理查德所设想的整个AI驱动法律服务业务。
但是,人工智能可能是不可靠的,当您在法律上工作时,不可靠的并不是真正的削减。不可能保持我们已经看到有关律师使用chatgpt的头条新闻当他们不应该,引用申请中不存在案件和法律。那些律师不仅面对法官的严厉谴责但在某些情况下甚至罚款和制裁。
自然,我不得不向理查德(Richard)询问幻觉,他认为该行业可以在这里前进,以及他如何努力确保Robin的AI产品不会将任何律师事务所纳入热水中。
但是理查德的背景还包括专业辩论。理查德(Richard)是伊顿学院(Eton College)的主辩论教练。在这里,他的很多专业知识都可以追溯到他如何对我的一些问题的答案结构,可以追溯到他对论证艺术的经验。
因此,我真的很想花时间在理查德的历史上与辩论,它如何与AI和法律行业联系在一起,以及这些新技术如何使我们以前所未有的方式重新评估事实与真理之间的差异。
好的:罗宾AI首席执行官理查德·罗宾逊(Richard Robinson)。开始了。
这次采访经过了详细的编辑。
Robin AI的创始人兼首席执行官Richard Robinson。很高兴有你在这里解码器。
谢谢你有我。我真的很感激。很高兴来到这里。我是节目的大倾听者。
我们之前说过。我会在这里到处都是,但我想从罗宾AI开始。如今,我们以许多不同的方式谈论AI。我从我的解码器运行前Google员工Cassie Kozyrkov,与她谈论决策科学。
但这是人工智能在经过很多思考的行业中的特定应用,应该有法律行业。告诉我,罗宾AI是什么?最新的是什么?
好吧,我们建立了AI律师,我们从帮助解决企业问题开始。我们的目标是从本质上帮助企业发展,因为业务增长的最大障碍之一不是收入,而不是管理您的成本 - 这是法律上的复杂性。法律问题实际上可以减慢业务。因此,我们存在解决这些问题。
我们建立了一个系统,可以帮助企业了解适用于他们的所有法律和法规,以及他们所做的所有承诺,其权利,义务和政策。我们使用AI来易于理解这些信息和易于使用该信息,并提出有关该信息的问题以解决法律问题。我们称其为法律情报。我们将最新的AI技术带入法学院,我们将它们交给了世界上最大的业务,以帮助他们成长。
一年半前,我与您交谈,您的描述在合同上要重得多。但是您说,我们正朝着我们要处理的方向更加努力。
是的,这是正确的。我们总是受到可用技术的限制。在Chatgpt之前,我们有非常传统的AI模型。如您所知,今天我们拥有更多的性能模型,这只是使我们扩大了野心。您完全正确,这不仅仅是合同。关于政策,这是关于法规的,它是关于适用于企业的不同法律。我们想帮助他们了解整个法律景观。
在这里为我提供一个案例研究的场景,内容涉及您的客户能够通过您的技术进行分类的方式。最近,罗宾大大化了您在AWS市场上的存在。因此,还有更多类型的公司能够将Robin AI的技术插入其可用的各种软件和数据。
那么,案例研究,现在的技术在做什么?这种超级标准云平台如何为您打开可能性?
我们帮助解决具体的法律问题。一个很好的例子是,每天,我们客户的组织中的人们都想知道他们是否正在做一些符合公司政策的事情。这些政策已上传到我们的平台,任何人都可以提出一个问题,从历史上看,法律或合规团队都会提出一个问题。他们可以说,为流浪者游戏提供了门票。我可以按照公司的政策去?我们可以使用AI明智地回答这个问题。
每天,企业都在签订合同。这就是他们几乎如何记录所有商业交易。现在,他们可以使用AI回顾他们以前的合同,它可以帮助他们回答有关要求签署的新合同的问题。因此,如果您与流浪者达成协议,并且过去与大都会队(Mets)合作,那么您可能想知道那个时候谈判的事情。上次我们如何克服这种僵局?您可以使用Robin平台回答这些问题。
我必须回到流浪者的游戏情况。
当然。
请告诉我,您将能够消除有关您是否可以拥有门票的令人讨厌的公司培训。如果那只是与AI的对话,而不必观看这些视频,那么我的天哪,所有的钱。
[笑]我正在尽力而为。不过,您会撞到头上的指甲。这些东西中的许多事情通过合规性和道德培训或长期有时乏味的课程引起了很多企业的痛苦。我们可以通过像Robin这样的AI技术使其变得更加有趣,更具互动性,更实时。我们确实在研究它,并帮助解决了您曾经需要人员做的大量法律用例。
您是否正在夺走初级律师的工作?我在那里扔了一个稻草人,但是如何改变入门级的法律学生或实习生的工作,谁会做AI也许现在可以做的乏味的事情?是否有更高级别的工作,还是仅使用较少使用?您看到客户做什么?
如果企业过去遇到法律问题,他们要么将他们送往律师事务所,要么尝试与自己的法律团队内部处理他们。使用AI,他们可以在内部处理更多的工作,因此他们不必向以前的律师事务所发送那么多的工作。现在,他们具有这种杠杆作用,可以解决以前的工作非常困难的工作。因此,实际上他们现在可以做更多的工作,而不必将其发送到外面。然后,有一些工作,您根本不需要人。您可以只依靠Robin等系统来回答这些合规性问题。
您是对的,毫无疑问,这项工作正在转移。在大多数情况下,AI可以复制。这还不是整个工作。这是工作的一部分,如果这很有意义。因此,我们看不到任何人使用我们的技术削减了人数,但我们确实认为他们有一种更有效的扩展方式,并且随着时间的流逝,他们可以减少对律师事务所的依赖,因为他们可以在内部做更多的内部。
但是,如何改变仍在进行思考的人们的工作呢?
我认为AI基本上是首先进行的,这是一个很大的转变。您在编码空间中看到了这一点。我认为他们在法律领域领先,但我们正在迅速追赶。如果您与许多使用这些编码平台的工程师进行交谈,他们会告诉您,他们希望AI首先编写所有代码,但他们不一定会在“ Entry”中击中Enter和of Production。他们要检查一下,他们将要进行审查,他们会质疑它,询问它,并重定向他们想要去的模型,因为这些模型仍然会犯错。
他们的手仍在驾驶轮上。只是他们做的略有不同。他们首先有AI,然后被人们用于检查。我们使人们可以轻松地使用几乎所有的工作来检查我们的工作。我们包括精确引用,参考文献,并解释我们从哪里得到答案。因此,初级或高级律师的角色现在要说:“首先使用罗宾。
您如何避免幻觉问题?我们在律师向法官提交摘要的消息中看到了这些提及,其中包括那是完全弥补的。我们听说那些被抓住的人。我想我们没有听说那些不会被抓住的人。
我知道这些是与您对Robin AI所做的不同类型的AI用途,但是在基于事实的,基于论证的行业对幻觉的行业中,仍然需要担心。
是的,有。这就是我们客户提出的第一问题。我确实认为这是为什么您需要法律领域的专业模型的重要组成部分。这是一个专业主题和专业领域。您需要拥有像罗宾(Robin)和不仅仅是服用chatgpt或phanthropic并无所作为的人。您需要真正优化其域的功能。
为了直接回答您的问题,我们包括了与模型所做的一切非常明确的链接的引用。因此,每次我们给出答案时,您都可以快速验证基本的原始资料。这是第一件事。第二件事是,我们非常努力地仅依靠外部,有效的,权威的数据源。我们将模型连接到经过法律验证的特定信息来源,以便我们知道我们可以参考您可以依靠的事情。
第三个是我们对客户进行教育,并提醒他们他们仍然是律师。我曾经一直为法院写案件 - 那是我开始罗宾之前的工作,我知道确保我引用的每个来源是100%正确的责任。您可以使用哪种工具到达那里。作为合法专业人员,您可以在将其发送给法官或将其发送给客户之前验证您的资源。其中一些是关于个人责任,因为AI是一种工具。无论我们提供什么保障措施,您都可以滥用它。我们必须教人们不要仅仅依靠这些事情,因为他们可以自信地撒谎。您将要检查自己。
目前,各种关系和安排在全球范围内都在重新谈判。几年前,这是有道理的交易,也许不再是因为预期的关税或磨损的关系。我想某些公司不得不回头看精美的印刷品并问:我们的权利到底是什么?我们的摆动房间是什么?我们该怎么办?
这是主要的AI用例吗?您如何看待语言被梳理,将20年前的措辞与现在的措辞进行比较?
这是完全正确的。世界上任何类型的变化都会触发人们想要回顾他们签名的目的。您是正确的,最新的是关税改革,它影响着每个全球业务。人们想回顾他们的协议。他们想知道,我可以退出这笔交易吗?有什么办法可以退出这项交易?他们以假设费用以及这些假设发生了变化的假设。这与我们在Covid期间看到的非常相似,当时人们想知道他们是否可以从这些协议中获得,鉴于发生了出乎意料的大流行。我们现在看到了同样的事情,但是这次我们有AI可以帮助我们。
因此,人们正在回顾历史协议。我认为他们意识到他们始终不知道所有合同在哪里。他们总是不知道自己的里面是什么。他们不知道谁对他们负责。因此,要使AI更加有效,我们绝对会看到全球业务客户试图了解监管格局对他们意味着什么。每次发生法规变化时,都会发生这种情况。每次通过新法律时,它都会导致企业甚至政府回顾并思考他们注册的内容。
我会给你另一个快速的例子。当特朗普在大学介绍与DEI有关的行政命令时,美国许多大学都需要回顾并询问:我们同意了什么?我们的一些赠款建议中有什么?我们的一些法律文件中有什么?我们的一些雇佣合同中有什么?我们作为顾问参与谁?考虑到这些行政命令,这是否处于危险之中?我们也将其视为一个大用例。因此,永久性变化是企业的现实,AI将帮助我们浏览这一点。
AWS市场为您做什么?
我认为这使客户相信他们可以信任我们。当企业开始采用云时,采用花费时间的最大原因是对安全的关注。对于企业来说,确保其数据安全可能是最重要的事情。这是从未有过的事件。您可以让您的数据不安全。
但是,如果企业想要AI的好处,他们将能够自己建造一切。他们将不得不与专家和Robin AI等初创公司合作。但是他们需要信心,当他们这样做时,他们最敏感的文件将得到安全和保护。因此,首先,AWS市场为我们提供了一种使我们的客户确信我们所做的工作是强大的,并且我们的应用程序是安全的,因为AWS Security VETS在市场上托管的所有应用程序。它使客户信任。
所以,就像Costco一样,对吗?我不是像您这样的商业供应商,也不是像您这样的软件公司,但这对我来说就像在Costco购物一样。有一定的保证。我知道它的声誉是因为我是会员,对吗?它策划了它在货架上携带的东西,并站在他们身后。
因此,如果我有问题,我可以将收据带到前台说:“嘿,我在这里买了这个。
没错。您可以利用AWS的品牌和声誉,AWS是世界上最大的云提供商。您提到的另一件事是在桌子上坐在世界上最大的杂货店的桌子上。它有很多客户。许多企业都承诺与AWS一起度过,他们将选择首先在AWS市场上托管的供应商。因此,它为我们提供了在商店窗口中的位置,以帮助我们向客户做广告。这确实是市场给Robin AI的原因。
我想退后一步,得到一点哲学。我们在杂草里有了企业的东西,但是与法律有关的方式,我们在这里发生的事情的一部分是,我们必须对我们如何在世界导航进行不同的思考。
在我看来,这两个步骤的核心是我们如何弄清楚是什么,以及我们如何弄清楚什么是公平的?您是辩论的从业者 - 我们也会有所了解。我不是专业的辩论者,尽管我众所周知能在电视上玩一场辩论。但是弄清楚第一步是什么,对吗?
我认为是。这是越来越困难的,因为有很多竞争的事实和如此多的社区,人们将选择性地选择自己的事实。但是,您是正确的,您需要建立现实和核心事实,然后才能真正开始做出决策并辩论您应该做的事情以及接下来应该发生的事情。
我确实认为AI对所有这些事情有所帮助,但这也可以使其更加困难。这些技术可用于好与坏。在我看来,既然我们有AI,我们将更加接近建立真相,这并不明显。
我认为您会立即探讨一些有趣的东西,事实与真理之间的区别。
是的,没错。很难真正实现真相。可以选择性地选择事实。我看到的电子表格和图表从技术上讲是事实,但它们并没有说明真相。因此,那里有很大的差距。
这是我们作为一个社会应该考虑AI的方式的方式?AI系统正在外出并在可能是事实的数据点上进行培训,但是这些事实,详细信息或数据点被安排的方式最终确定它们是否告诉我们一些真实的事情。
我认为这是对的。我认为,作为一个社会,我们需要使用技术来增强我们的集体目标。我们不应该让技术疯狂。这并不是说我们应该规范这些事情,因为我通常会反对这一点。我认为我们应该让创新在很大程度上合理地发生,但是作为消费者,我们对这些系统的工作方式,它们的设计方式以及如何重新部署有意见。
由于与对真理的搜索有关,拥有和使用这些系统的人过去一直在解决这些问题。如果您想Google搜索某些问题,例如美国智商的种族差异,您将获得一个相当精心策划的答案。我认为这本身就是一组非常危险的,两极化的主题。我们需要问自己与最后一代技术相同的问题,因为那是什么。
AI只是提供许多信息的新方法。在某些方面,这是一种更有效的方法。它将以一种更具说服力和强大的方式进行。因此,我们问自己更重要的是,我们如何希望提供信息?我们要如何引导这些系统,以使它们实现真理并避免偏见?
这就是为什么与Grok的埃隆·马斯克(Elon Musk)采取了与Google对Gemini采取的不同方法的重要原因。如果您还记得,双子座模型著名的是黑纳粹,它拒绝回答某些问题。据称它有一些政治偏见。我认为这是因为Google努力回答并解决了有关您如何使模型提供真相的一些困难问题,而不仅仅是事实。它可能没有花费足够的时间来解析它想要做到这一点。
我的意思是,格罗克似乎有自己的问题。
[笑] 这是。
就像人一样,对吗?某人挥舞着某些事情的人会遇到麻烦,而另一种挥动方式的人在其他事情上遇到麻烦。在事实问题上,然后人们倾向于相信什么。
我越来越接近这里的辩论问题,但是有时您有事实是您以某种方式将它们串在一起,但这并不是完全正确的,但是人们真的想相信它,对吗?他们拥抱它。然后,有时您有真理,人们完全想解雇。信息,真相或混乱的质量不一定与听众说的可能性相关,是的,理查德的权利。
在这些模型被设计为令人信服的时候,无论它们是否将事实串在一起以创造真相,还是他们是否将事实串在一起以创造其他东西,我们该如何处理?
我认为您会观察到有或没有AI的整个社会的确认偏见。人们正在寻找证实其先前信念的事实。人们对被告知并证实他们是对的,这让人们感到有些安慰。无论您使用哪种技术,都希望感觉自己正确的愿望只是所有人类的基准。
因此,如果您想塑造人们如何思考或说服他们知道自己是真实的事情,那么您必须从他们的立场开始,即如果他们与先前的信念不一致,他们不想听到它。我认为AI可以使这些事情变得更好,并且可以使这些事情变得更糟,对吗?人工智能将使正在寻找事实的人们更容易支持他们并验证他们已经相信的东西。它将为您提供世界上最有效的机制,以提供您选择的类型信息。
我认为一切都不会丢失,因为我还认为我们的军械库中有一个新工具,为那些试图提供真理的人,帮助改变某人的观点或向他们展示新方法。我们的军械库中有一个新工具可以做到这一点,对吗?我们有这位令人难以置信的Openai研究助理称为深入研究我们从未有过,这意味着我们可以开始提供更具吸引力的事实。我们可以更好地了解哪些类型的事实或例子将说服人们。我们可以构建更好的广告。我们可以发表更具说服力的陈述。我们可以道路测试流行语。我们可以更具创造力,因为我们有AI。从根本上讲,我们有一个陪练伙伴,可以帮助我们制作信息。
因此,AI基本上将同时使这些事情变得更好,更糟。我的希望是,右侧获胜,因为他们有许多新工具可以使用,但只有当他们学习如何使用它们时,他们就可以更引人注目。并不能保证人们会学习这些新系统,但是像我这样的人,您可以去那里并为这些东西的好处和能力而倾斜。
但是感觉就像我们在一个魔术表演中,对吗?许多幻觉起作用的原因是因为观众能够思考一件事,然后发生了不同的事情。我们受到条件的条件,AI可以通过了解他们已经相信的东西并建立一条途径来说服人们对真理的说服。它也可以用来通过了解他们已经相信的东西并添加面包屑,使他们相信任何阴谋理论可能是真的或不正确的。
现在如何摆动?像Robin AI这样的产品如何将所有这些都朝着更好的方向发展?
我认为其中很多取决于验证。[Openai首席执行官] Sam Altman说我认为真的很有见地。他说,为我们大多数社交媒体平台,Facebook,Instagram提供力量的算法是AI从业者所说的“ AI”大规模对AI的第一个示例,这些是AI模型实际上没有帮助实现对人类有益的目标的系统。
这些系统中的算法在Chatgpt之前就在那里,但是他们正在使用机器学习来弄清楚表面的内容。事实证明,人们真正令人发指,真正极端的内容使人们感到娱乐。它只是引起他们的注意。我认为任何人都不会说这对人有好处,并使他们变得更好。这不是滋养。在这些社交媒体平台上,无论是政治,人们争吵还是文化战争,我们都没有在许多内容中提供营养。这些系统一直为我们提供旨在引起我们注意的信息,这对我们不利。它不是营养的。
总体而言,我们在寻找真相的战斗中做得不太好,因为这些模型实际上没有优化为此。他们被优化以引起我们的注意。我认为您需要平台来找到与之作斗争的方法。因此,对于AI应用程序如何有助于解决这个问题的问题,我认为是通过创建工具来帮助人们验证某物的真相。
至少在流行的社会范式中,最有趣的例子是社区笔记,因为它们是某人说的一种方式,这是不对的,这是错误的,或者您在这里没有整个图片。而且,这不是由阴暗的编辑委员会编辑的。它通常是众包。维基百科是另一个很好的例子。这些是您基本上使用人群的智慧来验证或使信息无效的系统。
在我们的背景下,我们使用引用。我们说不相信模型,对其进行测试。它会给您一个答案,但这也将为您提供一种简单的方法来检查自己是对还是错。对我来说,这是AI应用程序中最有趣的部分。拥有能力,这一切都很好,但是只要我们知道它们可以用作不良的目的或可能不准确,我们将不得不建立对策,使社会很容易从他们那里获得我们想要的东西。我认为社区笔记和引用都是同一个家族中的孩子,他们试图了解这些模型如何真正起作用并影响我们。
您将我带给我希望去的地方。那个家庭中的另一个孩子是辩论。因为对我来说,辩论是游戏化的真相搜索,对吗?当您寻找真理时,您会创建这些交战部落,并组装事实并互相抗争。就像,不,这是我的事实,在这里我的论点是我基于此做出的。在这里,为什么你错了。你忘了这个。
这发生在公共广场,然后人们可以看到并决定谁获胜,这很有趣。但是回报是我们最终变得更加聪明。我们应该,对吗?
我们应该。
我们可以筛选并挑选这些东西,希望如果团队完成了他们的工作,希望正确地。我们需要在AI时代的新辩论模式吗?这些模型应该互相辩论吗?其中应该有辩论吗?它们是否以帮助我们了解事实质量的方式,这些事实已被串在一起以得出结论的逻辑的质量,或者是从该结论得出的分析质量的质量?
现在,我们试图努力解决的一部分是在这个数据之海中搜索搜索真相和审查分析的方法吗?
我认为这是我们应该做的。我还不相信我们已经看到了。回到我们之前所说的话,我们在过去的五到六年中所观察到的是人们变得……实际上辩论较少。人们在自己的社区中,是真实的或数字化的,并且正在获得自己的事实。他们实际上没有与另一端互动。他们看不到另一边的观点。他们收到了提供给他们的信息。因此,这几乎与辩论相反。
我们需要这些系统来表现出与您所说的所有相关和表征的所有信息,从而做出非常强大的工作。我认为这真的有可能。例如,我最近观看了一些总统辩论和纽约市长辩论,这真的很有趣。现在,我们有了AI系统,可以在辩论中为您提供实时的事实检查或实时替代视角。这对社会不大吗?如果我们能像您说的那样,我们可以使用AI进行更强大的对话,那就不好了吗?我认为这可以以一种有趣,引人入胜的方式来完成,最终促进了比我们所拥有的更多的参与度。
让我们谈谈您如何进行辩论。您在一个一直存在争论的移民家庭中长大,我的感觉是,辩论铺平了您的法律方式。告诉我有关您长大的辩论环境以及在智力上为您带来的帮助。
我的家人一直在争论。我们将聚集在一起,一起观看新闻,并争论每个故事。这确实帮助我发展了一种独立的思维,因为仅仅同意别人的意见并没有荣誉。您确实必须有自己的观点。More than anything else, it encouraged me to think about what I was saying because you could get torn apart if you hadnât really thought through what you had to say.And it made me value debate as a way to change minds as well, to help you find the right answer, to come to a conversation wanting to know the truth and not just wanting to win the argument.
For me, those are all skills that you observe in the law.Law is ambiguous.I think people think of the legal industry as being black and white, but the truth is almost all of the law is heavily debated.Thatâs basically what the Supreme Court is for.Itâs to resolve ambiguity and debate.If there was no debate, we wouldnât need all these judges and court systems.For me, itâs really shaped a lot of the way I think in a lot of my life.Itâs why I think how AI is being used in social media is such an important issue for society because I can see very easily how itâs going to shape the way people think, the way people argue or donât argue.And I can see the implications of that.
You coached an England debate team seven or eight years ago.你怎么做?How do you coach a team to debate more effectively, particularly at the individual level when you see the strengths and weaknesses of a person?And are there ways that you translate that into how you direct a team to build software?
I see the similarities between coaching the England team and running my business all the time.It still surprises me, to be honest.I think that when youâre coaching debate, the number one thing youâre trying to do is help people learn how to think because in the end, theyâre going to have to be the ones who stand up and give a five or seven-minute speech in front of a room full of people with not a lot of time to prepare.When you do that, youâre going to have to think on your feet.Youâre going to have to find a way to come up with arguments that you think are going to convince the people in the room.
For me, it was all about helping teach them that thereâs two sides to every story, that beneath all of the information and facts, thereâs normally some valuable principle at stake in every clash or issue thatâs important.You want to try and tap into that emotion and conflict when youâre debating.You want to find a way to understand both sides because then youâll be able to position your side best.Youâll know the strengths and weaknesses of what you want to say.
As the final thing, it was all about coaching individuals.Each person had a different challenge or different strengths, different things they needed to work on.Some people would speak too quickly.Some people were not confident speaking in big crowds.Some people were not good when they had too much time to think.You have to find a way to coach each individual to manage their weaknesses.And you have to bring the team together so that theyâre more than the sum of their parts.
I see this challenge all the time when weâre building software, right?Number one, weâre dealing with systems that require different expertise.No one is good at everything that we do.Weâve got legal experts, researchers, engineers, and they all need to work together using their strengths and managing their weaknesses so that theyâre more than the sum of their parts.So, thatâs been a huge lesson that I apply today to help build Robin AI.
I would say as well, if weâre focusing on individuals, that at any given time, you really need to find a way to put people in the position where they can be in their flow state and do their best work, especially in a startup.Itâs really hard being in a startup where you donât have all the resources and youâre going up against people with way more resources than you.You basically need everybody at the top of their game.That means youâre going to have to coach individuals, not just collectively.That was a big lesson I took from working on debate.
Are people the wild card?When I see the procedural dramas or movies with lawyers and their closing arguments, very often understanding your own strengths as a communicator and your own impact in a room â understanding peopleâs mindsets, their body language â can be very important.
Iâm not sure that weâre close to a time when AI is going to help us get that much better at dealing with people, at least at this stage.Maybe at dealing with facts, with huge, unstructured data sets, or with analyzing tons of video or images to identify faces.But Iâm not sure weâre anywhere near it knowing how to respond, what to say, how to adjust our tone to reassure or convince someone.我们是吗?
No, I think youâre right.That in the moment, interpersonal communication is, at least today, something very human.You only get better at these things through practice.And theyâre so real-time â knowing how to respond, knowing how to react, knowing how to adjust your tone, knowing how to read the room and to maybe change course.I donât see how, at least today, AI is helping with that.
I think you can maybe think about that as in-game.Before and after the game, AI can be really powerful.People in my company will often use AI in advance of a one-to-one or in advance of a meeting where they know they want to bring something up, and they want some coaching on how they can land the point as well as possible.Maybe theyâre concerned about something but they feel like they donât know enough about the point, and they donât want to come to the meeting ignorant.Theyâll do their research in advance.
So, I think AI is helping before the fact.Then after the fact, weâre seeing people basically look at the game tape.All the meetings at Robin are recorded.We use AI systems to record all our meetings.The transcripts are produced, action items are produced, and summaries are produced.People are asking themselves, âHow could I have run that meeting better?I feel like the conflict I had with this person didnât go the way I wanted.What could I have done differently?â So, I think AI is helping there.
Iâd say, as a final point, we have seen systems â and not much is written about these systems â that are extremely convincing one-on-one.There was a company called Character.AI, which wasacquired by Google。What it did was build AI avatars that people could interact with, and it would sometimes license those avatars to different companies.We saw a huge surge in AI girlfriends.We saw a huge surge in AI for therapy.Weâre seeing people have private, intimate conversations with AI.What Character.AI was really good at was learning from those interactions what would convince you.âWhat is it I need to say to you to make you change your mind or to make you do something I want?â And I think thatâs a growing area of AI research that could easily go badly if itâs not managed.
I donât know if you know the answer to this, but are AI boyfriends a thing?
[笑] I donât know the answer.
I havenât heard anything about AI boyfriends.
Iâve never heard anybody say, âAI boyfriends.â
Iâve never heard anything, and it makes me wonder why is it always an AI girlfriend?
I donât know.Iâve never heard that phrase, youâre right.
正确的?Iâm a little disturbed that I never asked this question before.I was always like, âOh yeah, thereâs people out there getting AI girlfriends and thereâs the movie她.â Thereâs no movie called他。
不。
Do they just not want to talk to us?Do they just not need that kind of validation?Thereâs something there, Richard.
绝对是。Itâs a reminder that these systems reflect their creators to some extent.Like you said, itâs why thereâs a movie她。Itâs why a lot of AI voices are female.Itâs partly because they were made by men.I donât say that to criticize them, but itâs a reflection of some of the bias involved in building these systems, as well as lots of other complex social problems.
They explain why we have prominent AI girlfriends, but I havenât heard about many AI boyfriends, at least not yet.Although, there was awife in a纽约时报故事, I think, who developed a relationship with ChatGPT.So, I think similar things do happen.
Let me try to bring this all together with you.What problems are we creating â that you can see already, perhaps â with the solutions that weâre bringing to bear?Weâve got this capability to analyze unstructured data, to come up with some answers more quickly, to give humans higher order work to do.I think weâve talked about how thereâs this whole human interaction realm that isnât getting addressed as deeply by AI systems right now.
My observation as the father of a couple⦠is it Gen Z now if youâre under 20?Theyâre not getting as much of that high-quality, high-volume human interaction in their formative years as some previous generations did because there are so many different screens that have the opportunity to intercept that interaction.And theyâre hungry for it.
But I wonder if they were models getting trained, theyâre getting less data in the very area where humans need to be even sharper because the AI systems arenât going to help us.Are we perhaps creating a new class of problems or overlooking some areas even as these brilliant systems are coming online?
Weâre definitely creating new problems.This is true of all technology thatâs significant.Itâs going to solve a lot of problems, but itâs going to create new ones.
Iâd point to three things with AI.Number one, we are creating more text, and a lot of it is not that useful.So, weâre generating a lot more content, for better or for worse.Youâre seeing more blogs because itâs easy to write a blog now.Youâre seeing more articles, more LinkedIn status updates, and more content online.Whether thatâs good or bad, we are generating more things for people to read.What may happen is that people just read less because itâs harder to sift through the noise to find the signal, or they may rely more on the systems of information theyâre used to to get that confirmation bias.So, I think thatâs one area AI has not solved, at least today.Generating incremental text has gotten dramatically cheaper and easier than it ever was.
The second thing Iâve observed is that people are losing writing skills because you donât have to write anymore, really.You donât even need to tell ChatGPT in proper English.Your prompts can be quite badly constructed and it kind of works out what youâre trying to say.What I observe is that peopleâs ability to sit down and write something coherent, that takes you on a journey, is actually getting worse because of their dependence on these external systems.I think thatâs very, very bad because to me, writing is deeply linked to thinking.In some ways, if you canât write a cogent, sequential explanation of your thoughts, that tells me that your thinking might be quite muddled.
Jeff Bezos had a similar principle.他banned slide decksand insisted on a six-page memo because you can hide things in a slide deck, but you have to know what youâre talking about in a six-page memo.I think thatâs a gap thatâs emerging because you can depend on AI systems to write, and it can excuse people from thinking.
The final thing I would point to is that we are creating this crisis of validation.When you see something extraordinary online, I, by default, donât necessarily believe it.Whatever it is, I just assume it might be fake.Iâm not going to believe it until Iâve seen more corroboration and more validation.By default, I assume things arenât true, and thatâs pretty bad actually.It used to be that if I saw something, I would assume itâs true, and itâs kind of flipped the other way over the last five years.
So, I think AI has definitely created that new problem.But like we talked about earlier, I think there are ways you can use technology to help combat that and to fight back.Iâm just not seeing too many of those capabilities at scale in the world yet.
Youâre a news podcasterâs dream interview.I want to know if this is conscious or trained.You tend to answer with three points that are highly organized.Youâll give the headline and then youâll give the facts, and then youâll analyze the facts with âpoint one,â âpoint two,â and âfinally.â Itâs very well-structured and youâre not too wordy or lengthy in it.Is that the debater in you?
[笑] 是的。I canât take any credit for that one.
Do you have to think about it anymore or do the answers just come through that way for you?
I do have to think about it, but if you do it enough, it does become second nature.I would say that whenever Iâm speaking to someone like you, who in these types of settings, I think a lot more.The pressureâs on and you get very nervous, but it does help you.It goes back to what I was saying about writing, itâs a way of thinking.Youâve got to have structured thoughts, and to take all the ideas in your mind and hopefully communicate them in an organized way so itâs easy for the audience to learn.Thatâs a big part of what debating teaches.
Youâre a master at it.I almost didnât pick up on it.You donât want them to feel like youâre writing them a book report in every answer, and youâre very good at answering naturally at the same time.I was like, âMan, this is well organized.â He always knows what his final point is.我喜欢那个。Iâm kind of like a drunken master in my speech.
是的。我确切地知道你的意思。
Thereâs not a lot of obvious form there, so I appreciate it when I see it.Richard Robinson, founder and CEO of Robin AI, using AI to really ramp up productivity in the legal industry and hopefully get us to more facts and fairness. Weâll see if we reach a new era of gamified debate, which you know well.I appreciate you joining me for this episode of解码器。
Thank you very, very much for having me.
Questions or comments about this episode?Hit us up at decoder@theverge.com.We really do read every email!
A podcast from边缘about big ideas and other problems.
Follow topics and authorsfrom this story to see more like this in your personalized homepage feed and to receive email updates.